The results of numerical experiments on simulation of shock-wave loading of lithium deuteride using the thermodynamic equilibrium model are presented. The developed model allows us to describe thermodynamic parameters of lithium deuteride of different porosity, in a wide range of pressure using model relation, the experimental and theoretical data of lithium deuteride. Comparison of the model calculations with experimental data confirms the validity and acceptable accuracy of the used model equations. The model used makes it possible to calculate the thermodynamic parameters of lithium deuteride and its mixtures for pressures higher than 5 GPa in one-velocity and one-temperature approximations on the assumption that the pressure is identical for all phases. The calculation results have been compared with the known experimental data by different researchers.

1.
C. E.
Ragan
 III
,
Phys. Rev. A
29
,
1391
1402
(
1984
).
2.
A. N.
Babushkin
,
G. I.
Pilipenko
, and
F. F.
Gavrilov
,
J. Phys. Condens. Matter
5
,
8659
8664
(
1993
).
3.
J.
Zhang
,
Y.
Zhao
,
Y.
Wang
, and
L.
Daemen
,
J. Appl. Phys.
103
,
093513
(
2008
).
4.
R. A.
Jat
,
S. C.
Parida
,
K.
Krishnan
,
N. S.
Anand
,
S. G.
Sawant
,
R.
Agarwal
,
Z.
Singh
,
S. K.
Aggarwal
and
V.
Venugopal
,
J. Alloys Compd.
505
,
309
314
(
2010
).
5.
A. A.
Kayakin
,
L. F.
Gudarenko
, and
D. G.
Gordeev
,
Combust. Explos. Shock Waves
50
,
599
611
(
2014
).
6.
A. M.
Molodets
,
D. V.
Shakhrai
, and
A. A.
Golyshev
,
High Temp.
55
,
510
514
(
2017
).
7.
M. D.
Knudson
,
M. P.
Desjarlais
, and
R. W.
Lemke
,
J. Appl. Phys.
120
,
235902
(
2016
).
8.
D. V.
Minakov
and
P. R.
Levashov
,
Comput. Mater. Sci.
114
,
128
134
(
2016
).
9.
D.
Sheppard
,
J. D.
Kress
,
S.
Crockett
, and
L. A.
Collins
,
Phys. Rev. E
90
,
063314
(
2014
).
10.
A.
Lazicki
,
R. A.
London
,
F.
Coppari
,
D.
Erskine
,
H. D.
Whitley
,
K. J.
Caspersen
,
D. E.
Fratanduono
,
M. A.
Morales
,
P. M.
Celliers
,
J. H.
Eggert
,
M.
Millot
,
D. C.
Swift
,
G. W.
Collins
,
S. O.
Kucheyev
,
J. I.
Castor
, and
J.
Nilsen
,
Phys. Rev. B
96
,
134101
(
2017
).
11.
K. K.
Maevskii
,
Math. Montisnigri
41
,
123
130
(
2018
).
12.
S. A.
Kinelovskii
and
K. K.
Maevskii
,
High Temp.
54
,
675
681
(
2016
).
13.
S. A.
Kinelovskii
and
K. K.
Maevskii
,
Tech. Phys.
61
,
1244
1249
(
2016
).
14.
K. K.
Maevskii
,
J. Phys. Conf. Ser.
894
,
012057
(
2017
).
15.
S. A.
Kinelovskii
and
K. K.
Maevskii
,
Combust. Explos. Shock Waves
47
,
706
714
(
2011
).
16.
A. A.
Charakhchyan
,
V. V.
Milyavskii
, and
K. V.
Khishchenko
,
High Temp.
47
,
235
242
(
2009
).
17.
V. V.
Brazhkin
,
Phys.-Usp.
55
(
8
),
790
795
(
2012
).
18.
S. P.
Marsh
,
LASL Shock Hugoniot Data
,
Berkeley Univ. California Press
,
1980
.
19.
C. E.
Ragan
 III
,
Phys. Rev. A
25
,
3360
3375
(
1982
).
20.
K. K.
Maevskii
and
S. A.
Kinelovskii
,
J. Phys. Conf. Ser.
946
,
012113
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.