In the paper the quadrotor spatial motion adaptive control based on the passification method is considered. It is assumed that adaptive controller for quadrotor attitude is already designed and the attention is focused on the quadrotor spatial motion control. Problem of quadrotor group motion in the formation with adaptive positioning controller is studied in the details. This approach seems to be also high efficient for parameter variations, which may take place during long-range quadrotor flight. It is shown that after a certain transformation of quadrotor dynamics, the transfer function from auxiliary control inputs to quadrotor spatial coordinates posses the hyper-minimum-phase (HMP) property. In this case, the passification-based technique could be applied for adaptive controls design. The proposed technique allows to use decentralized cooperative control. Application of the proposed adaptive control is studied in the details by the intensive computer simulations.

1.
M.
Porfiri
,
D.
Roberson
, and
D.
Stilwell
,
Automatica
43
,
1318
1328
(
2007
).
2.
W.
Ni
and
D.
Cheng
,
Systems & Control Letters
59
,
209
217
(
2010
).
3.
Z.
Li
,
W.
Ren
,
X.
Liu
, and
M.
Fu
,
Int. J. Robust and Nonlinear Control
23
,
534
547
(
2013
).
4.
A.
Jadbabaie
,
J.
Lin
, and
A. S.
Morse
,
IEEE Trans. Automat. Contr.
48
,
988
1001
(
2003
).
5.
J. A.
Fax
and
R. M.
Murray
,
IEEE Trans. Automat. Contr.
49
,
1465
1476
(
2004
).
6.
R.
Olfati-Saber
,
J. A.
Fax
, and
R. M.
Murray
,
Proceedings of the IEEE
95
,
215
233
(
2007
).
7.
A.
Fradkov
and
I.
Junussov
, “Synchronization of networks of linear systems by static output feedback,” in
Proc. 50th IEEE Conf. Dec. Contr. (CDC 2011), Orlando, USA
(
IEEE
,
2011
), pp.
8188
8192
.
8.
I.
Dzhunusov
and
A.
Fradkov
,
Automation and Remote Control
70
,
1190
1205
July (
2009
).
9.
A.
Fradkov
,
Eur. J. Control
6
,
573
582
(
2003
).
10.
A. L.
Fradkov
,
I. V.
Miroshnik
, and
V. O.
Nikiforov
,
Nonlinear and Adaptive Control of Complex Systems
(
Kluwer
,
Dordrecht
,
1999
).
11.
A. L.
Fradkov
,
Europ. J. Contr.
9
,
577
586
(
2003
).
12.
B.
Andrievsky
and
A. L.
Fradkov
,
Autom. Remote Control
67
,
1699
1731
November (
2006
).
13.
B. R.
Andrievskii
and
A. A.
Selivanov
,
Autom. Remote Control
79
,
957
995
(
2018
).
14.
S.
Tomashevich
and
B.
Andrievsky
, “Improved adaptive coding procedure for transferring the navigation data between UAVs in formation,” in
Proc. ICNPAA World Congress 2018, Yerevan, Armenia
(
AIP
,
2018
) (to appear).
15.
A. L.
Fradkov
,
Autom. Remote Control
35
,
1960
1966
(
1974
).
16.
B. R.
Andrievskii
,
A. A.
Stotskii
, and
A. L.
Fradkov
,
Autom. Remote Control
49
,
1533
1564
(
1988
).
17.
A.
Proskurnikov
and
A.
Fradkov
,
Autom. Remote Control
77
,
1711
1740
(
2016
).
18.
A.
Proskurnikov
, “Consensus between nonlinearly coupled delayed agents,” in
Proc. International Physics and Control Conference PhysCon-2013
(
San Luis Potosi
,
Mexico
,
2013
).
19.
A.
Matveev
,
A.
Proskurnikov
, and
I.
Novinitsyn
, “Stability of continuous-time consensus algorithms for switching networks with bidirectional interaction,” in
Proc. European Control Conference 2013 (ECC 2013)
(
Zurich
,
2013
), pp.
1872
1877
.
20.
I.
Dzhunusov
and
A.
Fradkov
,
Automation and Remote Control
72
,
1615
1626
(
2011
).
21.
I.
Dzhunusov
and
A.
Fradkov
,
Autom Remote Control
70
,
1190
1205
(
2009
).
22.
Peaucelle
D.
,
Fradkov
A.
,
Systems & Control Letters
57
,
881
887
(
2008
).
23.
Peaucelle
D.
,
Fradkov
A.
,
Andrievsky
B.
,
Intern. J. of Adaptive Control and Signal Processing
22
,
590
608
(
2008
).
24.
A.
Levant
,
Int. J. Control
58
,
1247
1263
(
1993
).
25.
G.
Bartolini
,
A.
Levant
,
A.
Pisano
, and
E.
Usai
,
Intern. J. Control
89
,
1747
1758
(
2016
).
26.
B. R.
Andrievskii
,
A. N.
Churilov
, and
A. L.
Fradkov
, “Feedback Kalman–Yakubovich lemma and its applications to adaptive control,” in
Proc. 35th IEEE Conf. Dec. Control
(
IEEE Press
,
Kobe, Japan
,
1996
), pp.
4537
4542
.
27.
I.
Fantoni
and
R.
Lozano
,
Non-linear Control for Underactuated Mechanical Systems. Series: Communications and Control Engineering
, edited by
E.
Sontag
and
M.
Thoma
(
Springer-Verlag Ltd
.,
London
,
2002
).
28.
E.
Altug
,
J.
Ostrowski
, and
R.
Mahony
, “
Control of a quadrotor helicopter using visual feedback
,” in
Proc. IEEE Intern. Conf. on Robotics and Automation (ICRA 2002), Washington, DC, USA
(
IEEE Press
,
2002
), pp.
72
76
.
29.
G. P.
Castillo
,
R.
Lozano
, and
A. E.
Dzul
,
Modelling and Control of Mini-Flying Machines. Series: Advances in Industrial Control
(
Springer-Verlag Ltd
.,
2005
).
30.
A.
Das
,
K.
Subbarao
, and
F.
Lewis
, “
Dynamic inversion of quadrotor with zero-dynamics stabilization
,” in
Proc. 17th IEEE Intern. Conf. on Control Applications
,
Part of 2008 IEEE Multi-conference on Systems and Control (MSC 2008)
,
San Antonio, USA
(
IEEE Press
,
2008
).
31.
W. C.
Janusz
,
R.
Czyba
, and
G.
Szafrański
, “
Model identification and data fusion for the purpose of the altitude control of the VTOL aerial robot
,” in
Proc. 2nd IFAC Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS 2013)
,
Compiegne, France
(
IFAC
,
2013
), pp.
263
269
.
This content is only available via PDF.
You do not currently have access to this content.