We have made a direct electron wave-packet modeling of the elements and parameters of the solid state configuration space R3×SO(3) by a structural realization of the SU(3) Lie algebra into a cyclically expanding isotropic vector matrix unfolding of its infinitesimal root vectors, faithful to his prescriptions how these partial derivative “geodetic curves of length equaling zero” interact so that the “Plücker line geometry can be transferred into a sphere geometry” by trigonometrically projecting its “straight lines into space R’s spheres’ rectilinear generatrices” and vice versa, where “x, y, z are perceived as parameters and dx, dy, dz as direction cosines”. This outlines a unit lattice cell of the two interconnecting root vector sets, spanning an interior spacefilling 12-step one-octahedron/two-tetrahedrons SO(3) electron helical loop walled in and coordinated by the likewise 12-edged and by itself three-dimensionally close-packing parallelepiped infinitesimal ground eigenelement of R3. By a hierarchically accumulating coherent brick-laying of this wave-packet hybrid in a recurring Bohr orbital sequence order, the primordial hydrogen plasma phase of the universe and its self-inflation and turn into the full atomic and periodic table organization with all its static and dynamic, single as well as collective characteristics is replicated as observed in reality.

1.
E.
Schrödinger
,
Annalen der Physik
79
,
361
376
(
1926
).
2.
E.
Schrödinger
,
Annalen der Physik
79
,
489
527
(
1926
).
3.
M.
Frappier
,
Science
359
,
1474
(
2018
).
4.
E.
Crull
and
G.
Bacciagaluppi
G. (
2011
).
Translation of W. Heisenberg, Ist eine deterministische Ergänzung der Quantenmechanik möglich?
http://Philsci-archive.pitt.edu/8590/1/Heis1935-EPR-Final-translation.pdf.
5.
W.
Heisenberg
,
Erkenntnis
2
,
172
182
(
1931
).
6.
M. P.
Davidson
,
Stochastic models of quantum mechanics – A perspective.
https://arxiv.org/pdf/quant-phys/0610046.pdf.
7.
G. L.
Naber
,
The Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special Theory of Relativity
(
Springer Science&Business Media
,
New York, Dordrecht, Heidelberg, London
,
2012
).
8.
M. S.
Lie
, “
Over en classe geometriske transformationer
,” Ph.D. Thesis,
Kristiania (now Oslo) University
,
1871
.
9.
E.
Trell
,
Algebras Groups and Geometries
15
,
395
445
(
1998
), and hadronicpress.com/lie.pdf (internet open accessible).
10.
E.
Trell
,
S.
Edeagu
and
A.
Animalu
,
AIP Conference Proceedings
,
1798
,
020162
, 1-14 (
2017
)
E.
Trell
,
S.
Edeagu
and
A.
Animalu
and
Mathematics in Engineering
,
Science and Aerospace
8
,
215
237
(
2017
).
11.
E.
Trell
,
AIP Conference Proceedings
1637
,
1100
1109
(
2014
).
12.
E.
Trell
,
Acta Phys. Austriaca
,
55
,
97
110
(
1983
).
13.
E.
Trell
,
Hadronic J.
13
,
277
297
(
1990
).
14.
E.
Trell
,
Phys. Essays
4
,
272
283
(
1991
).
15.
E.
Trell
,
Phys. Essays
5
,
362
373
(
1992
).
16.
E.
Trell
,
Algebras Groups and Geometries
15
,
447
471
(
1998
).
17.
E.
Trell
,
AIP Conference Proceedings
1051
,
127
141
(
2008
).
18.
E.
Trell
, “Back to the Ether”. In:
Ether, Spacetime & Cosmology
vol.
3
, edited by
C.
Duffy
and
M. C.
Levy
(
Apeiron
,
Montreal
,
2009
), pp.
339
387
.
19.
E.
Trell
,
AIP Conference Proceedings
1479
,
2142
2146
(
2012
).
20.
E.
Trell
,
Afr. J. Phys.
3
,
24
47
(
2013
).
21.
E.
Trell
,
J. Comput. Meth. Sci. Eng.
13
,
245
270
(
2013
).
22.
23.
L.
Hogben
.
Mathematics for the Million
(
Georg Allen&Unwin
,
London
,
1937
).
24.
E.
Trell
,
G.
Akpojotor
,
S.
Edeagu
and
A.
Animalu
, “
Self-organized isotropic vector matrix translation apparatus for realization of the electron, nucleon, and periodic system
.”
International Meeting Physical Interpretations of Relativity Theory
,
Bauman Moscow State Technical University
,
Moscow
, July 3-7
2017
.
25.
A.
Animalu
and
C. O.
Acholonu
,
Afr. J. Phys.
3
,
31
50
(
2010
).
26.
A.
Animalu
,
Afr. J. Phys.
3
,
51
62
(
2010
).
27.
A.
Animalu
and
N. C.
Animalu
,
Afr. J. Phys.
3
,
63
93
(
2010
).
28.
A.
Animalu
,
J. Comput. Meth. Sci. Eng.
13
,
1
17
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.