Holomorphic functions are the key tool for solutions of two dimensional problems in mathematical and theoretical physics, mechanics of continua. For the three-dimensional problems the hypercomplex analysis is an analogical one, i.e. monogenic Clifford functions or regular quaternionic functions playing the role of a three-dimensional analogue of holomorphic functions. In this paper a survey of investigations in the quaternionic analysis have been made in the North-Eastern federal university (Yakutsk state university) from the 1980s is presented.
REFERENCES
1.
G.C.
Moisil
, N.
Theodoresco
, Fonctions holomorphes dan’s l’espase.
Mathematica 5
(1931
), 141153
.2.
R.
Fueter
, Uber die analytischen Darstellungen der regularen Funktionen einer Quaternionenvariablen.
Comput. Math. Helv.
4
(1932
), 920
.3.
F.
Brackx
, R.
Delanghe
, and F.
Sommen
, Clifford Analysis.
Research Notes in Mathematics
No. 76
, Pitman, London
, 1982
.4.
K.
Gürlebeck
, K.
Habetha
and W.
Sprößig
, Holomorphic functions in the plane and n-dimensional space. Birkhauser Verlag
, Basel–Boston–Berlin
, 2008
.5.
V.V.
Naumov
and Yu.M.
Grigor’ev
, The Laurent series for the Moisil-Theodoresco system. Dynamics of Continuous Medium [in Russian]
, No. 54
(1982
), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
, Novosibirsk
, 115
–126
.6.
Yu.M.
Grigor’ev
and V.V.
Naumov
, Approximation theorems for the Moisil-Theodorescu system.
Siberian Mathematical Journal September-October
, 25
, Issue 5
(1984
), 693
–701
, doi:.7.
Yu.M.
Grigor’ev
, Some solutions of Lame spatial static equations. Dynamics of Continuous Medium [in Russian]
, No. 67
(1984
), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
, Novosibirsk
, 29
–36
.8.
Yu.M.
Grigor’ev
, Solution of a problem for an elastic sphere in a closed form. Dynamics of Continuous Medium [in Russian]
, No. 71
(1985
), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
, Novosibirsk
, 50
–54
.9.
Grigor’ev
, Y.M.
Solution of spatial problems of an elasticity theory by means of a quaternionic functions theory
, Candidat dissertation (Ph.D.) [in Russian], pp. 131
. Lavrentev Institute of Hydrodynamics
, Novosibirsk
(1985
).10.
V.V.
Naumov
, Solution of two main problems of an equilibrium of an elastic sphere in a closed form. Dy-namics of Continuous Medium [in Russian]
, No. 54
(1986
), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
, Novosibirsk
, 96
–108
11.
B.D.
Annin
, Yu.M.
Grigorev
, V.V.
Naumov
, Solution of spatial problems of an elasticity theory by means of a quaternionic functions theory, Materialy IX Vsesoyuzn. konf. chisl. metody teorii uprug. i plast
. [in Russian], Novosibirsk
, 35
–42
, (1986
).12.
Yu.M.
Grigor’ev
and V.V.
Naumov
, Solution of third and fourth main problems of an equilibrium of an elastic sphere in a closed form. Dynamics of Continuous Medium [in Russian]
, No. 87
(1988
), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
, Novosibirsk
, 54
–66
.13.
V.V.
Naumov
, Analytical results in mathematical theory of elasticity.
Candidat dissertation (Ph.D.) [in Rus-sian]
, Yakutsk State University
, 1993
.14.
Yu.M.
Grigor’ev
, Quaternionic analysis and it’s applications in the mathematical theory of an elasticity. Uchonye zapiski YaGU. Ser.: Matem. Fizika
[in Russian], Yakutsk
, YaGU
, 1994
, 110
–119
.15.
Yu.M.
Grigor’ev
and V.V.
Alekhin
, A quaternionic boundary element method. Sib. jurn. industr. matem
. [in Russian], Vol. 2
, No. 1
(1999
), Inst. Matem. Sib. Otd. Akad. Nauk SSSR, Novosibirsk
, 47
–52
.16.
Yu.M.
Grigor’ev
, A spatial analogue of the integral equation of Mushelishvili. Dynamics of Continuous Medium [in Russian]
, No. 114
(1999
), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
, Novosibirsk
, 161
–165
.17.
Yu.M.
Grigor’ev
, Spatial problem on masses a by tidal deformations.
Vychisl. Tekhnologii [in Russian], Novosibirsk
, 5
, No 4
(2000
), 40
–54
.18.
Yu.M.
Grigor’ev
, General solution of equilibrium equations of incompressible elastic bodies.
Sovrem. probl. mekh. i prikl. matem. Materialy shkoly–seminara, posv. 70–letiyu prof. D.D. Ivleva [in Russian], Voronezh
, 25–30 sent. 2000. Chast 1. Voronezh, 2000
, 12
–20
.19.
Quaternionic representation of a general solution of equilibrium equations of incompressible elastic bodies. Vseross. shkola–seminar po sovr. probl. mekh. deform. tverdogo tela, Novosibirsk, 13–17 okt. 2003. Sb. dokladov.
Novosibirsk
, NGTU
, 2003
, 69
–72
.20.
Yu.
Grigor’ev
, Three-dimensional Quaternionic Analogue of the KolosovMuskhelishvili Formulae. Hyper-complex Analysis: New perspectives and applications
, Trends in Mathematics
(Eds. S.
Bernstein
, U.
Kaehler
, I.
Sabadini
, F.
Sommen
), Birkhauser, Basel
(2014
), 145
–166
, DOI 21.
Yu.
Grigor’ev
, Regular quaternionic functions and their applications
. In: Rlebeck
, K.
, Lahmer
, T.
(eds.) Proceedings of the 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering
, Weimar
, pp. 4550
(2015
).22.
Yu.
Grigoriev
, Radial integration method in quaternion function theory and its applications.
AIP Conference Proceedings
, 1648
, 440003
(2015
), doi .23.
Yu.
Grigor’ev
, Three–dimensional Analogue of Kolosov-Muskhelishvili Formulae. In: Bernstein
S.
, Kähler
U.
, Sabadini
I.
, Sommen
F.
(eds) Modern Trends in Hypercomplex Analysis. Trends in Mathematics. Birkhäuser, Cham
(2016
), 203
–215
, DOI 24.
Y.M.
Grigorev
, Regular quaternionic polynomials and their properties.
Complex Variables and Elliptic Equa-tions
, 62
, No 9
, 1343
–1363
(2017
), doi .25.
Yuri
Grigorev
, Klaus
Grlebeck
, and Dmitrii
Legatiuk
, Interpolation problem for the solutions of linear elasticity equations based on monogenic functions.
AIP Conference Proceedings
, 1907
, 030054
(2017
), doi 26.
Yu.
Grigor’ev
Quaternionic Functions and Their Applications in a Viscous Fluid Flow.
Complex Analysis and Operator Theory
, No 12
, 491508
, (2018
), doi 27.
Yu.
Grigor’ev
, K.
Gürlebeck
and D.
Legatiuk
, Quaternionic formulation of a Cauchy problem for the Lamé equation.
AIP Conference Proceedings
, 1978
, 280007
(2018
), doi .28.
Yu.
Grigor’ev
, K.
Gürlebeck
, D.
Legatiuk
and A.
Yakovlev
On Quaternionic Functions for the Solution of an Ill–posed Cauchy Problem for a Viscous Fluid.
AIP Conference Proceedings
, (2018
), to be published.
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.