Holomorphic functions are the key tool for solutions of two dimensional problems in mathematical and theoretical physics, mechanics of continua. For the three-dimensional problems the hypercomplex analysis is an analogical one, i.e. monogenic Clifford functions or regular quaternionic functions playing the role of a three-dimensional analogue of holomorphic functions. In this paper a survey of investigations in the quaternionic analysis have been made in the North-Eastern federal university (Yakutsk state university) from the 1980s is presented.

1.
G.C.
Moisil
,
N.
Theodoresco
,
Fonctions holomorphes dan’s l’espase.
Mathematica 5
(
1931
),
141153
.
2.
R.
Fueter
,
Uber die analytischen Darstellungen der regularen Funktionen einer Quaternionenvariablen.
Comput. Math. Helv.
4
(
1932
),
920
.
3.
F.
Brackx
,
R.
Delanghe
, and
F.
Sommen
,
Clifford Analysis.
Research Notes in Mathematics
No.
76
,
Pitman, London
,
1982
.
4.
K.
Gürlebeck
,
K.
Habetha
and
W.
Sprößig
, Holomorphic functions in the plane and n-dimensional space. 
Birkhauser Verlag
,
Basel–Boston–Berlin
,
2008
.
5.
V.V.
Naumov
and
Yu.M.
Grigor’ev
, The Laurent series for the Moisil-Theodoresco system. 
Dynamics of Continuous Medium [in Russian]
, No.
54
(
1982
),
Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
,
Novosibirsk
,
115
126
.
6.
Yu.M.
Grigor’ev
and
V.V.
Naumov
,
Approximation theorems for the Moisil-Theodorescu system.
Siberian Mathematical Journal September-October
,
25
, Issue
5
(
1984
),
693
701
, doi:.
7.
Yu.M.
Grigor’ev
, Some solutions of Lame spatial static equations. 
Dynamics of Continuous Medium [in Russian]
, No.
67
(
1984
),
Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
,
Novosibirsk
,
29
36
.
8.
Yu.M.
Grigor’ev
, Solution of a problem for an elastic sphere in a closed form. 
Dynamics of Continuous Medium [in Russian]
, No.
71
(
1985
),
Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
,
Novosibirsk
,
50
54
.
9.
Grigor’ev
,
Y.M.
Solution of spatial problems of an elasticity theory by means of a quaternionic functions theory
, Candidat dissertation (Ph.D.) [in Russian], pp.
131
.
Lavrentev Institute of Hydrodynamics
,
Novosibirsk
(
1985
).
10.
V.V.
Naumov
, Solution of two main problems of an equilibrium of an elastic sphere in a closed form. 
Dy-namics of Continuous Medium [in Russian]
, No.
54
(
1986
),
Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
,
Novosibirsk
,
96
108
11.
B.D.
Annin
,
Yu.M.
Grigorev
,
V.V.
Naumov
, Solution of spatial problems of an elasticity theory by means of a quaternionic functions theory,
Materialy IX Vsesoyuzn. konf. chisl. metody teorii uprug. i plast
. [in Russian],
Novosibirsk
,
35
42
, (
1986
).
12.
Yu.M.
Grigor’ev
and
V.V.
Naumov
, Solution of third and fourth main problems of an equilibrium of an elastic sphere in a closed form. 
Dynamics of Continuous Medium [in Russian]
, No.
87
(
1988
),
Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
,
Novosibirsk
,
54
66
.
13.
V.V.
Naumov
,
Analytical results in mathematical theory of elasticity.
Candidat dissertation (Ph.D.) [in Rus-sian]
,
Yakutsk State University
,
1993
.
14.
Yu.M.
Grigor’ev
, Quaternionic analysis and it’s applications in the mathematical theory of an elasticity. 
Uchonye zapiski YaGU. Ser.: Matem. Fizika
[in Russian],
Yakutsk
,
YaGU
,
1994
,
110
119
.
15.
Yu.M.
Grigor’ev
and
V.V.
Alekhin
, A quaternionic boundary element method. 
Sib. jurn. industr. matem
. [in Russian], Vol.
2
, No.
1
(
1999
),
Inst. Matem. Sib. Otd. Akad. Nauk SSSR, Novosibirsk
,
47
52
.
16.
Yu.M.
Grigor’ev
, A spatial analogue of the integral equation of Mushelishvili. 
Dynamics of Continuous Medium [in Russian]
, No.
114
(
1999
),
Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR
,
Novosibirsk
,
161
165
.
17.
Yu.M.
Grigor’ev
,
Spatial problem on masses a by tidal deformations.
Vychisl. Tekhnologii [in Russian], Novosibirsk
,
5
, No
4
(
2000
),
40
54
.
18.
Yu.M.
Grigor’ev
,
General solution of equilibrium equations of incompressible elastic bodies.
Sovrem. probl. mekh. i prikl. matem. Materialy shkoly–seminara, posv. 70–letiyu prof. D.D. Ivleva [in Russian],
Voronezh
, 25–30 sent. 2000. Chast 1. Voronezh,
2000
,
12
20
.
19.
Quaternionic representation of a general solution of equilibrium equations of incompressible elastic bodies. Vseross. shkola–seminar po sovr. probl. mekh. deform. tverdogo tela, Novosibirsk, 13–17 okt. 2003. Sb. dokladov.
Novosibirsk
,
NGTU
,
2003
,
69
72
.
20.
Yu.
Grigor’ev
, Three-dimensional Quaternionic Analogue of the KolosovMuskhelishvili Formulae. 
Hyper-complex Analysis: New perspectives and applications
,
Trends in Mathematics
(Eds.
S.
Bernstein
,
U.
Kaehler
,
I.
Sabadini
,
F.
Sommen
),
Birkhauser, Basel
(
2014
),
145
166
, DOI
21.
Yu.
Grigor’ev
,
Regular quaternionic functions and their applications
. In:
Rlebeck
,
K.
,
Lahmer
,
T.
(eds.)
Proceedings of the 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering
,
Weimar
, pp.
4550
(
2015
).
22.
Yu.
Grigoriev
,
Radial integration method in quaternion function theory and its applications.
AIP Conference Proceedings
,
1648
,
440003
(
2015
), doi .
23.
Yu.
Grigor’ev
, Three–dimensional Analogue of Kolosov-Muskhelishvili Formulae. In:
Bernstein
S.
,
Kähler
U.
,
Sabadini
I.
,
Sommen
F.
(eds)
Modern Trends in Hypercomplex Analysis. Trends in Mathematics. Birkhäuser, Cham
(
2016
),
203
215
, DOI
24.
Y.M.
Grigorev
,
Regular quaternionic polynomials and their properties.
Complex Variables and Elliptic Equa-tions
,
62
, No
9
,
1343
1363
(
2017
), doi .
25.
Yuri
Grigorev
,
Klaus
Grlebeck
, and
Dmitrii
Legatiuk
,
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions.
AIP Conference Proceedings
,
1907
,
030054
(
2017
), doi
26.
Yu.
Grigor’ev
Quaternionic Functions and Their Applications in a Viscous Fluid Flow.
Complex Analysis and Operator Theory
, No
12
,
491508
, (
2018
), doi
27.
Yu.
Grigor’ev
,
K.
Gürlebeck
and
D.
Legatiuk
,
Quaternionic formulation of a Cauchy problem for the Lamé equation.
AIP Conference Proceedings
,
1978
,
280007
(
2018
), doi .
28.
Yu.
Grigor’ev
,
K.
Gürlebeck
,
D.
Legatiuk
and
A.
Yakovlev
On Quaternionic Functions for the Solution of an Ill–posed Cauchy Problem for a Viscous Fluid.
AIP Conference Proceedings
, (
2018
), to be published.
This content is only available via PDF.
You do not currently have access to this content.