In this work we demonstrate a biological sensor based on reduced graphene oxide as transducer and aptamers as sensitive agent. We used polymer substrate to make sensor flexible and developed such conductive areas shape that could be easily integrated with standard flexible wire connector. We optimized standard EDC/NHS protocol for covalent aptamer immobilization. We reached response from protein starts from 10 µM and selective for thrombin. So we confirmed possibility of covalent immobilization of aptamers and working capacity of our biosensor.

1.
S.
Bobade
,
D.R.
Kalorey
,
S.
Warke
.
Biosensor Devices: A review on their biological applications
.
Biosci. Biotech. Res. Comm.
2016
,
9
(
1
),
132
137
.
2.
C.-M.
Tlmaciu
,
M.C.
Morris
.
Carbon nanotube biosensors
.
Front Chem.
2015
;
3
, art.
59
.
3.
Aydemir
N
,
Malmstrm
J
,
Travas-Sejdic
J.
Conducting polymer based electrochemical biosensors
.
Phys Chem Chem Phys.
2016
,
18
(
12
),
8264
8277
.
4.
P.
Suvarnaphaet
and
S.
Pechprasarn
.
Graphene-Based Materials for Biosensors: A Review
.
Sensors
2017
,
17
,
2161
2185
.
5.
D.
Jeong
,
J.
Kim
,
M.-S.
Chae
 et al. 
Multifunctionalized Reduced Graphene Oxide Biosensors for Simultaneous Monitoring of Structural Changes in Amyloid-40
.
Sensors
2018
,
18
,
1738
1752
.
6.
S.
Stankovich
,,
D.
Dikin
,
Piner
A.
 et al.
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
.
Carbon
,
2007
,
45
(
7
),
1558
1565
.
7.
M. J.
McAllister
,
J.L.
Li
,
D. H.
Adamson
, et al. 
Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite
.
Chem. Matter
,
2007
,
19
,
4396
4404
.
8.
L. J.
Cote
,
R.
Cruz-Silva
,
J. X.
Huang
.
Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite
.
J. Am. Chem. Soc.
2009
,
131
,
11027
11032
.
9.
M.
Koinuma
,
C.
Ogata
,
Y.
Kamei
 et al. 
Photochemical Engineering of Graphene Oxide Nanosheets
.
J. Phys. Chem. C
,
2012
,
116
,
19822
19827
.
10.
D. A.
Sokolov
,
K. R.
Shepperd
,
T. M.
Orlando
.
Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide
.
J. Phys. Chem. Lett.
2010
,
1
,
2633
2636
.
11.
R. Y.N.
Gengler
,
D. S.
Badali
,
D.
Zhang
.
Revealing the ultrafast process behind the photoreduction of graphene oxide
.
Nature Communications
,
2013
,
4
,
2560
2565
.
12.
M. F.
El-Kady
,
V.
Strong
,
S.
Dubin
,
R. B.
Kaner
.
Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
.
Science
2012
,
335
,
1326
1330
.
13.
A.
Hayat
,
J. L.
Marty
.
Aptamer based electrochemical sensors for emerging environmental pollutants
.
Fron-tiers in Chemistry
,
2014
,
2
, Art. 41.
14.
K.
Han
,
Z.
Liang
,
N.
Zhou
.
Design Strategies for Aptamer-Based Biosensors
.
Sensors
,
2010
,
10
,
4541
4557
.
15.
M. A. H.
Nawaz
,
S.
Rauf
,
G.
Catanante
 et al. 
One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker
.
Sensors
2016
,
16
,
1651
.
16.
Y.
Liu
,
D.
Yu
,
C.
Zeng
 et al. 
Biocompatible Graphene Oxide-Based Glucose Biosensors
.
Langmuir
2010
,
26
(
9
),
6158
6160
.
17.
A.
Gupta
,
G.
Chen
,
P.
Joshi
, et al. 
Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films
.
Nano Letters
,
2006
,
6
,
2667
2673
.
18.
M.
Kasischke
,
S.
Maragkaki
,
S.
Volz
 et al. 
Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses
.
Applied Surface Science
,
2018
,
445
,
197
203
.
19.
E.
Kymakis
,
K.
Savva
,
M.M.
Stylianakis
 et al. 
Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes
.
Adv. Funct. Mater.
,
2013
,
23
(
21
),
2742
2749
.
20.
R.
Arul
,
R.N.
Oosterbeek
,
J.
Robertson
 et al. 
The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement
.
Carbon
,
2016
,
99
,
423
431
.
21.
N.D.K.
Tu
,
J.
Choi
,
C.R.
Park
 et al. 
Remarkable Conversion Between n- and p-Type Reduced Graphene Oxide on Varying the Thermal Annealing Temperature
.
Chem. Mater.
,
2015
,
27
(
21
),
7362
7369
.
22.
K.F.
Akhmadishina
,
I.I.
Bobrinetskiy
,
I.A.
Komarov
 et al. 
Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers
.
Semiconductors
,
2015
,
49
,
1749
1753
.
This content is only available via PDF.
You do not currently have access to this content.