The parallel Asynchronous Differential Evolution (ADE) method with adaptive correlation matrix (ACM) is utilized for numerical solution of the global minimization problem within the Separated Form Factors model (SFF) for analysis of structure of the drug-delivering phospholipid transport nanosystem (PTNS). In this framework, parameters of the SFF model are fitted to experimental data of the small angle scattering of X-rays (SAXS) and of neutrons (SANS). The ADE-SFF approach is described, the results of numerical study of polydispersed PTNS-based systems in water solutions depending on the disaccharide concentration, are presented.
REFERENCES
1.
K.V.
Price
and R.V.
Storn
(1997
) Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
, J. of Global Optimization
11
, 341
–359
.2.
K.V.
Price
, R.M.
Storn
, and J.A.
Lampinen
, Differential Evolution: A Practical Approach to Global Optimization (Springer-Verlag
, Berlin–Heildelberg
, 2005
).3.
S.
Das
and P.N.
Suganthan
(2011
) Differential evolution: A survey of the state-of-the-art
, IEEE Trans. Evol. Comput.
15
, 4
–31
.4.
E.I.
Zhabitskaya
and M.V.
Zhabitsky
(2012
) Asynchronous differential evolution
, Lecture Notes in Computer Science
7125
, 328
–333
.5.
E.
Zhabitskaya
and M.
Zhabitsky
(2013
) Asynchronous differential evolution with restart
, Lecture Notes in Computer Science
8236
, 555
–561
.6.
E.I.
Zhabitskaya
and M.V.
Zhabitsky
, “Asynchronous differential evolution with adaptive correlation matrix
,” in Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation
(USA, New York
, 2013
) pp. 455
–462
.7.
E.I.
Zhabitskaya
and M.V.
Zhabitsky
(2012
) Parallel solving of optimization problems on distributed systems by asynchronous differential evolution
, Mathematical Modelling
24
(12
), 33
–37
. [in Russian]8.
M.A.
Kiselev
, E.V.
Zemlyanaya
, V.K.
Aswal
, and H.H.
Neubert
(2006
) What can we learn about the lipid vesicle structure from the small-angle neutron scattering experiment? Investigation DMPC vesicle structure by small angle neutron scattering
, Europ. Biophys. J.
35
, 477
–493
.9.
M.A. Kiselev E.V.
Zemlyanaya
, E.I.
Zhabitskaia
, and V.L.
Aksenov
(2015
) Investigation of the Structure of Unilamellar Dimyristoylphosphatidylcholine Vesicles in Aqueous Sucrose Solutions by Small Angle Neutron and X Ray Scattering
, Crystallography Reports
60
, 143
–147
.10.
E.I.
Zhabitskaia
, E.V.
Zemlyanaya
and M.A.
Kiselev
(2014
) Unilameller DMPC vesicles structure analysis using parallel asynchronous differential evolution
, RUDN Journal of Mathematics, Information Sciences and Physics, Peoples’ Friendship University of Russia
2
, 253
–259
. [in Russian]11.
M.A.
Kiselev
, E.V.
Zemlyanaya
, N.Y.
Ryabova
, T.
Hauss
, L.
Almasy
, S.S.
Funari
, J.
Zbytovska
, and D.
Lom-bardo
(2014
) Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering
, Appl. Phys. A
116
, 319
–325
.12.
M.A.
Kiselev
and E.V.
Zemlyanaya
(2017
) Dimethyl sulfoxide-induced dehydration of the intermembrane space of dipalmitoylphosphatidylcholine multilamellar vesicles: Neutron and synchrotron diffraction study
, Crystallography Reports
62
(5
), 763
–767
.13.
M.A.
Kiselev
(2011
) Methods for lipid nanostructure investigation at neutron and synchrotron sources
, Physics of Particles and Nuclei
10
(2
), 302
–331
.14.
A.I.
Archakov
et al, Based on botanical phospholipids nanosystem for activation of biologically active compounds, and method of its manufacture (versions), Patent RU 2391966, Russian Federation
.15.
N.V.
Medvedeva
et al, Pharmateutical composition for the treatment of rheumatic and inflammatory diseases based on indomethacin incorporated into phospholipid nanoparticles, Patent RU 2417079, Russian Federation
.16.
M.
Bashashin
, E.
Zemlyanaya
, E.
Zhabitskaya
, M.
Kiselev
, and T.
Sapozhnikova
(2018
) Determination of the Vesicular Systems Parameters: Parallel Implementation and Analysis of the PTNS Vesicle Structure
, EPJ Web of Conf.
173
, 05003
.17.
E.V.
Zemlyanaya
, M.A.
Kiselev
, E.I.
Zhabitskaya
, V.L.
Aksenov
, O.M.
Ipatova
, and O.I.
Ivankov
(2018
) The small-angle neutron scattering data analysis of the phospholipid transport nanosystem structure
, J. of Physics: Conf. Ser.
1023
, 012017
.18.
M.A.
Kiselev
, E.V.
Zemlyanaya
, A.Yu.
Gruzinov
, E.I.
Zhabitskaya
, O.M.
Ipatova
, and V.L.
Aksenov
, Analysis of vesicular structure of nanoparticles in the phospholipid based drug delivery system using SAXS data, JINR Preprint P3-2017-32
, 2017
, Dubna
; to be published in Journal of Surface Investigation
.19.
E.V.
Zemlyanaya
, M.A.
Kiselev
, E.I.
Zhabitskaya
, A.Yu.
Gruzinov
, V.L.
Aksenov
, O.M.
Ipatova
, and O.S.
Druzhilovskaya
(2016
) SFF analysis of the small angle scattering data for investigation of a vesicle systems structure
, J. of Physics: Conf. Ser.
724
, 012056
.20.
E.
Zhabitskaya
, E.
Zemlyanaya
, M.
Kiselev
, and A.
Gruzinov
(2016
) The parallel asynchronous differential evolution method as a tool to analyze synchrotronous scattering experimental data from vesicular systems
, EPJ Web of Conf.
108
, 02047
.21.
M.A.
Kiselev
, E.V.
Zemlyanaya
, O.M.
Ipatova
, A.Yu.
Gruzinov
, E.V.
Ermakova
, A.V.
Zabelin
, E.I.
Zhabit-skaya
, O.S.
Druzhilovskaya
, and V.L.
Aksenov
(2015
) Application of small-angle X-ray scattering to the char-acterizationand quantification of the drug transport nanosystem based on the soybean phosphatidylcholine
, Journal of Pharmaceutical and Biomedical Analysis
114
, 288
–291
.22.
E.I.
Zhabitskaya
, E.V.
Zemlyanaya
, and M.A.
Kiselev
(2015
) Numerical analysis of SAXS-data from vesic-ular systems by asynchronous differential evolution method
, Mathematical Modelling
, 27
(7
), 58
–64
. [in Russian]23.
J.A.
Nelder
and R.
Mead
(1995
) A simplex method for function minimization
, Computer J.
7
, 308
–313
.24.
W.C.
Davidon
, Variable metric methods for minimization, A.E.C. Res. and Develop. Report ANL-5990 (Argonne National Laboratory
, Argonne, IL
, 1959
), p. 21
.25.
R.
Fletcher
and M.J.D.
Powell
(1993
) A rapidly converging descent method for minimization
, Comput. J.
6
, 163
–168
.26.
F.
James
and M.
Roos
(1975
) Minuit — a system for function minimization and analysis of the parameter errors and correlations
, Computer Physics Communications
10
(6
), 343
–446
.27.
M.
Bashashin
, E.
Zemlyanaya
, and M.
Kiselev
, “Parallel SFF-SANS study of structure of polydispersed vesicular systems
,” in Proceedengs of Ninth International Conference on Numerical Methods and Applications, Borovez, Bulgaria, August 2018
, accepted for publication.28.
V.S
Kurbatov
and I.N.
Silin
(1994
) New method for minimizing regular functions with constraints on param-eter region
, Nucl. Instr. & Meth. A
345
, 346
–350
.29.
I.M.
Sitnik
(2016
) The new version of the FUMILIM minimization package
, Comput. Phys. Comm.
209
, 199
–204
.
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.