We present a new algorithm for mathematical modeling of colliding beams dynamics in supercolliders. A single-pass collision of the high-energy beams makes possible their strong deformation or even disruption, and the study of the beam stability is needed.

We consider the motion of the charged particle beams with the high relativistic factors of the particles and large crossing angles in self-consistent electromagnetic fields. The standard numerical models and algorithms are quasi-three-dimensional and have diffiligculties with taking into account large crossing angles (∼ 20 mrad). We present a fully three-dimensional algorithm, based on solution of the Vlasov equation and set of Maxwell equations with the particle-in-cell method. In the 3D modeling the problem is not only the computational speed, but also the insufficient memory of one processor to keep the data for the beams with highly nonuniform density distribution. The presence of the high value of the relativistic particle factor (γ ∼ 104 – 106) is a fundamental feature of the problem, due to the relativism the transversal fields grow with γ, leading to the high spatial gradients. The domain-particle parallelization enabled us to perform numerical simulations with 109 macro-particles.

We present the computational results and analysis of the beam evolution for the case of two focused colliding beams.

1.
C.
Adolphsen
 et al,
The International Linear Collider Technical Design Report – Volume 3.II
:
Accelerator Baseline Design
, arXiv:1306.6328[physics.acc-ph],
2013
.
2.
R.
Appleby
,
D.
Angal-Kalinin
,
P.
Bambade
,
S.
Cavalier
,
G.
Le Meur
,
F.
Touze
, and
Y.
Iwashita
, “The 2 mrad crossing angle scheme for the international linear collider,” in
Proc. of EPAC08
(
Genoa
,
Italy
,
2008
) p.
MOPP005
.
3.
Y.
Nosochkov
,
K.
Moffeit
,
A.
Seryi
,
M.
Woods
,
R.
Arnold
,
W.
Oliver
,
B.
Parker
, and
E.
Torrence
, “Design of ILC extraction line for 20 mrad crossing angle,” in
Proc. of the 2005 Particle Accelerator Conference
(
Knoxville
,
USA
,
2005
) p.
RPPP030
.
4.
V.I.
Telnov
(
2018
)
Journal of Instrumentation
13
,
P03020
.
5.
K.
Hirata
(
1994
)
Phys. Rev. Lett.
74
,
2228
2231
.
6.
X.
Buffat
,
L.
Barraud
,
J.
Barranco
,
A.
Florio
, and
T.
Pieloni
, “Numerical and experimental studies of coherent beam-beam modes: stability and decoherence,” in
Workshop on Beam-Beam Effects in Circular Colliders
(
Berkley
,
USA
,
2018
) p.
RPPP030
.
7.
D.
Schulte
,
Study of electromagnetic and hadronic background in the interaction region of the TESLA collider
, PhD thesis, DESY,
1997
.
8.
B.
Terzic
 et al, “Long-term simulations of beam-beam dynamics on GPUs,” in
Proc. of IPAC2017
(
Copen-hagen
,
Denmark
,
2017
) p.
THPAB086
.
9.
J.
Qiang
,
M.
Furman
, and
R.
Ryne
(
2002
)
Phys. Rev. ST Accel. Beams
5
, p.
104402
.
10.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
Boca Raton, Florida, USA
,
1988
).
11.
J.P.
Boris
, “Relativistic plasma simulation – optimization of a hybrid code,” in
Fourth Conference on Numerical Simulation of Plasmas
(
Washington
,
1970
), pp.
367
.
12.
A. B.
Langdon
and
B. F.
Lasinski
, in
Controlled Fusion, Methods in Computational Physics: Advances in Research and Applications
, Vol.
16
(
Elsevier
,
1976
), pp.
327
366
.
13.
K. S.
Yee
(
1966
)
IEEE Trans. Antenn. Propagat.
AP-14
,
302
307
.
14.
J.
Villasenor
and
O.
Buneman
(
1992
)
Comput. Phys.
69
,
306
316
.
15.
L.D.
Landau
and
E.M.
Lifshitz
,
The Classical Theory of Fields, Vol. 2 of A Course of Theoretical Physics
(
Pergamon Press
,
1971
).
16.
V. A.
Vshivkov
and
M. A.
Boronina
(
2012
)
Matem. Mod. (Russian)
24
,
67
83
.
17.
M.
Sands
,
The Physics of Electron Storage Rings: An Introduction
(
SLAC-121
,
USA
,
1971
).
18.
W.
Herr
, “Particle colliders and concept of luminosity,” in
CERN Accelerator School
,
Granada, Spain
,
2012
.
19.
Y.
Peng
and
Y.
Zhang
, “Luminosity reduction with hourglass effect and crossing angle in an e-p collider,” in
Proc. of IPAC2015
(
Richmond
,
USA
,
2015
) p.
TUPTY010
.
20.
K. V.
Lotov
,
I. V.
Timofeev
,
E. A.
Mesyats
,
A. V.
Snytnikov
, and
V. A.
Vshivkov
(
2015
)
Physics of Plasmas
22
, p.
024502
.
21.
M.
Boronina
,
V.
Vshivkov
,
E.
Levichev
,
S.
Nikitin
, and
V.
Snytnikov
, “3D PIC method development for simulation of beam-beam effects in supercolliders,” in
Proceedings of PAC07
(
Albuquerque
,
USA
,
2007
) p.
THPAN060
.
22.
M.A.
Boronina
and
V.D.
Korneev
(
2013
)
Bull. Nov. Comp. Center
16
,
15
22
.
23.
S.
Kireev
(
2009
)
Parallel Computing Technologies
5698
,
406
413
.
24.
E.
Berendeev
,
G.
Dudnikova
,
A.
Efimova
, and
V.
Vshivkov
, in
Numerical Analysis and Its Applications
,
Springer Publishing
vol. 10187,
2017
, pp.
227
234
.
25.
M.A.
Boronina
and
V.A.
Vshivkov
(
2015
)
Journal of Plasma Physics
81
, p.
495810605
.
26.
P.
Chen
and
K.
Yokoya
(
1988
)
Phys. Rev. D
38
,
987
.
This content is only available via PDF.
You do not currently have access to this content.