In this paper we investigate rogue waves over a chaotic background in the framework of higher order NLS equations that are relevant in deep water waves and nonlinear optical fiber applications. The following key features of rogue waves in deep water, as determined from our laboratory wave tank experiments and numerical experiments, are discussed: 1) The long time dynamics of the MI is chaotic and this chaotic background leads to enhanced rogue wave activity. Viewing the water wave dynamics as near-integrable, the chaotic wave train evolution is characterized by heteroclinic transitions in the Floquet spectrum of the NLS equation. 2) A nonlinear spectral decomposition of rogue waves in JONSWAP random sea states shows the proximity to instabilities and heteroclinic data is the main predictor of rogue wave occurrence.

The long distance dynamics of modulational instability in optical fibers is also studied. Periodically modulated cw waves are shown to evolve chaotically and generate rogue waves for a variety of physical parameters. Drawing parallels with our previous work on water waves we show that the chaotic evolution and rogue wave formation is characterized by heteroclinic transitions in the nonlinear spectrum. Different higher order terms are shown to be primarily responsible for the chaos and rogue waves in the parameter regimes considered.

1.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
2.
V.E.
Zakharov
and
A.B.
Shabat
(
1972
)
Soviet Phys. JETP
34
62
69
.
3.
T.B.
Benjamin
, and
J.E.
Feir
(
1967
)
J. Fl. Mech.
27
,
417
430
;
T.B.
Benjamin
, and
J.E.
Feir
(
1990
)
Opt. Lett.
15
,
1443
.
[PubMed]
4.
K. L.
Henderson
,
D. H.
Peregrine
, and
J. W.
Dodd
(
1999
)
Wave Motion
29
,
341
361
.
5.
A.
Hasegawa
and
Y.
Kodama
(
1990
)
Opt. Lett.
15
,
1443
.
6.
M.J.
Ablowitz
,
B.M.
Herbst
, and
C.M.
Schober
(
1996
)
Physica A
228
,
212
235
.
7.
G. P.
Agrawal
,
Nonlinear Fiber Optics
(
Academic Press
,
1995
);
G. P.
Agrawal
(
1996
)
Physica A
228
,
212
235
.
8.
M. J.
Ablowitz
,
J.
Hammack
,
D.
Henderson
, and
C.M.
Schober
(
2001
)
Physica D
152-153
,
416
433
.
9.
E.
Lo
and
C.C.
Mei
(
1985
)
Jour. Fluid Mech.
150
,
395
408
10.
K.B.
Dysthe
(
1979
)
Proc. Roy. Soc. Lond. A
369
,
105
114
.
11.
M.J.
Ablowitz
,
J.
Hammack
,
D.
Henderson
, and
C.M.
Schober
(
2000
)
Phys. Rev. Lett.
84
,
887
890
.
12.
C.M.
Schober
and
M.
Strawn
(
2015
)
Physica D
313
,
81
98
.
13.
A.
Osborne
,
M.
Onorato
, and
M.
Serio
(
2000
)
Phys. Lett. A
275
,
386
396
.
14.
M.
Onorato
,
A.
Osborne
,
M.
Serio
, and
S.
Beritone
(
2001
)
Phys. Rev. Lett.
86
,
5831
.
15.
N.
Akhmediev
,
A.
Ankiewicz
, and
M.
Taki
(
2009
)
Phys. Lett. A
373
,
675
678
.
16.
N.
Akhmediev
,
J. M.
Soto-Crespo
, and
A.
Ankiewicz
(
2009
)
Phys. Lett. A
373
,
2137
2145
.
17.
A.
Calini
and
C. M.
Schober
(
2002
)
Phys. Lett. A
298
,
335
349
.
18.
A.
Calini
and
C. M.
Schober
, “Rogue waves in higher order nonlinear Schrö dinger models,” in
Extreme Ocean Waves
edited by
E.
Pelinovsky
and
C.
Kharif
(
Springer
,
2009
) pp.
31
51
.
19.
A.
Islas
and
C. M.
Schober
(
2005
)
Phys. Fluids
17
,
1
4
.
20.
A.
Calini
and
C.M.
Schober
(
2012
)
Nonlinearity
25
,
R99
R116
.
21.
A.
Calini
and
C. M.
Schober
(
2013
)
J. of Optics
15
,
105201
.
22.
A.
Calini
and
C. M.
Schober
(
2014
)
Nat. Haz. and Earth Sys. Sci.
14
,
1
10
.
23.
A.
Calini
and
C. M.
Schober
(
2017
)
Wave Motion
71
,
5
17
.
24.
W.E.
Ferguson
,
H.
Flaschka
, and
D.W.
McLaughlin
(
1982
)
J. Comput. Phys.
45
,
157
209
.
25.
A.R.
Bishop
,
M.G.
Forest
,
D.W.
McLaughlin
, and
E.A.
Overman
 II
(
1986
)
Physica D
23
,
293
328
.
26.
M. G.
Forest
and
J. E.
Lee
, “Geometry and modulation theory for the periodic Schrödinger equation,” in
Oscillation Theory, Computation, and Methods of Compensated Compactness (Math and its Applications)
edited by
I. M. A.
Dafermos
, et al
(
Springer
,
New York
,
1986
) pp.
35
70
.
27.
N.
Ercolani
,
M.G.
Forest
,
D.W.
McLaughlin
,
Physica D
43
,
349
384
(
1990
).
28.
Y.
Li
and
D. W.
McLaughlin
(
1994
)
Commun. Math. Phys.
162
,
175
214
.
29.
D. H.
Sattinger
and
V. D.
Zurkowski
(
1987
)
Physica D
26
,
225
250
.
This content is only available via PDF.
You do not currently have access to this content.