In this paper, we consider the λ-model on Cayley tree for order two with Potts competing nearest-neighbor and prolonged next-nearest neighbor interactions. We described the construction of the Gibbs measure for the considered model. We proved the existence of the translation-invariant limiting Gibbs measures for the model.
REFERENCES
1.
H. O.
Georgii
, Gibbs Measures and Phase Transitions (de Gruyter Studies in Mathematics vol 9)
(Berlin
: de Gruyter
, 1988
).2.
R. J.
Baxter
, Exactly Solved Models in Statistical Mechanics
(New York
: Academic
, 1982
).).3.
Y. G.
Sinai
, Theory of Phase Transitions:Rigorous Results
(Pergamon Press
, Oxford
, 1982
).4.
R. A.
Minlos
, Introduction to Mathematical Statistical Physics
(Amer. Math. Soc
., Providence, RI
, 2000
).5.
J.
Vannimenus
, Jou. Phy. B Condensed Matter
43
, 141
–148
(1981
).6.
7.
8.
R. B.
Potts
, Proc. Cambridge Philos. Soc.
48
, 106
–109
(1952
).9.
F.
Peruggi
, d. L. F, and G.
Monroy
, J. Phys. A: Math. Gen.
16
, 811
–827
(1983
).10.
11.
N. N.
Ganikhodzhaev
, Theor. Math. Phys.
85
, p. 11251134
(1990
).12.
N. N.
Ganikhodjaev
, F. M.
Mukhamedov
, and J. F. F.
Mendes
, J. Stat. Mech.
p. P08012
(2006
).13.
C. J.
Preston
, Gibbs States on Countable Sets
(Cambridge Univ. Press
, London
, 1974
)14.
F. M.
Mukhamedov
, Rep. Math. Phys.
53
, 1
–18
(2004
).15.
U. A.
Rozikov
, Sib. Math. J.
39
, p. 373380
(1998
).16.
U. A.
Rozikov
, Gibbs Measures on Cayley Trees
(World Scientific
, Singapore
, 2013
).17.
F.
Mukhamedov
, C. H.
Pah
, and H.
Jamil
, Theoretical and Mathematical Physics
194
(2
), 260
–273
(2018
).18.
F.
Mukhamedov
, C. H.
Pah
, M.
Rahimatullaev
, and H.
Jamil
, IOP Conf. Series: Journal of Physics
, 949
, 12
–21
(2017
)
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.