The Mahalanobis-Taguchi System (MTS) refers to a newly-developed technique based on statistics that integrates a number of mathematical concepts to be applied for classification and diagnosis purposes within systems that are comprised of multiple dimensions. The MTS has been proven to be an exceptional technique that can be employed in numerous fields. In MTS, it is essential to choose the variables in order to enhance the accuracy in classifying via orthogonal array (OA) and Signal-to-Noise (S/N) ratios. However, the penalty for over-fitting or regularization is not included in the feature selection process for the MTS classifier. Hence, this paper investigated the combination between MTS and statistical pattern recognition approach applied to automotive crankshaft remanufacturing as an automated decision-making tool for classification purposes. The outcomes revealed that MTS displayed better classification performance for both training and test datasets, besides eliminating redundant and irrelevant parameters better than the conventional approach did.

1.
G.
Taguchi
and
R.
Jugulum
,
The Mahalanobis-Taguchi strategy: A pattern technology system
(
JohnWiley & Sons
,
2002
).
2.
W. Z. A. W.
Muhamad
,
F.
Ramlie
, and
K. R.
Jamaludin
,
Far East Journal of Mathematical Sciences (FJMS)
102
,
3021
3052
(
2017
).
3.
N.
Harudin
,
K.
Jamaludin
,
M. N.
Muhtazaruddin
,
F.
Ramlie
, and
W. Z. A.W.
Muhamad
, “
A feasibility study in adapting shamos bickel and hodges lehman estimator into t-method for normalization
,” in
IOP Conference Series: Materials Science and Engineering
, Vol.
319
(
IOP Publishing
,
2018
).
4.
W. Z. A. W.
Muhamad
,
K. R.
Jamaludin
,
S. A.
Zakaria
,
Z. R.
Yahya
, and
S. A.
Saad
, “
Combination of feature selection approaches with random binary search and mahalanobis taguchi system in credit scoring
,” in
25th National Symposium on Mathematical Sciences (SKSM25)
,
AIP Conference Proceedings
, Vol.
1974
(
AIP Publishing
,
2018
).
5.
P. C.
Mahalanobis
, On the generalized distance in statistics, (
National Institute of Science of India
,
1936
).
6.
W. Z. A. W.
Muhamad
,
K. R.
Jamaludin
,
S. A.
Saad
,
Z. R.
Yahya
, and
S. A.
Zakaria
, “
Random binary search algorithm based feature selection in mahalanobis taguchi system for breast cancer diagnosis
,” in
25th National Symposium on Mathematical Sciences (SKSM25)
,
AIP Conference Proceedings
, Vol.
1974
(
AIP Publishing
,
2018
).
7.
W. Z. A. W.
Muhamad
,
K. R.
Jamaludin
,
F.
Ramlie
,
N.
Harudin
, and
N. N.
Jaafar
, “
Criteria selection for an mba programme based on the mahalanobis taguchi system and the kanri distance calculator
,” in
Research and Development (SCOReD)
,
2017 IEEE 15th Student Conference on (IEEE
,
2017
), pp.
220
223
.
8.
F.
Ramlie
,
K. R.
Jamaludin
,
R.
Dolah
, and
W. Z. A. W.
Muhamad
,
Global Journal of Pure and Applied Mathematics
12
,
2651
2671
(
2016
).
9.
W. Z. A. W.
Muhamad
,
K. R.
Jamaludin
,
Z. R.
Yahya
, and
F.
Ramlie
,
Far East Journal of Mathematical Sciences (FJMS)
101
,
2663
2675
(
2017
).
10.
E. A.
Cudney
,
K.
Paryani
, and
K. M.
Ragsdell
,
Concurrent Engineering
14
,
343
354
(
2006
).
11.
E.
Ghasemi
,
A.
Aaghaie
, and
E. A.
Cudney
,
International Journal of Quality & Reliability Management
32
,
291
307
(
2015
).
12.
G.
Taguchi
and
J.
Rajesh
,
Sankhy¯a: The Indian Journal of Statistics, Series B
233
248
(
2000
).
13.
R.
Jugulum
,
G.
Taguchi
,
S.
Taguchi
, and
J. O.
Wilkins
,
Technometrics
45
,
16
21
(
2003
).
14.
R.
Parveen
,
M.
Nabi
,
F.
Memon
,
S.
Zaman
, and
M.
Ali
,
J Adv Res Comput
Appl 3,
8–17
(
2016
).
R.
Jugulum
,
Journal of Quality Engineering Forum
10
60
73
(
2002
).
15.
H. A. A. M.
Abas
,
F. B. A.
Aziz
, and
R.
Hasan
,
Journal of Advanced Research in Computing and Applications
5
,
11
16
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.