We consider the propagation of an internal solitary wave over two different types of varying depth regions, i.e. a gentle monotonic bottom slope connecting two regions of constant depth in two-layer fluid flow and a smooth bump. Here, we let the depth of the upper layer is smaller than the lower layer such that an internal solitary wave of negative polarity is generated. The appropriate model for this problem is the variable-coefficient extended Korteweg-de Vries equation, which is then solved numerically using the method of lines. Our numerical results show different types of transformation of the internal solitary wave when it propagates over the varying depth region depending on the depth of the lower layer after the varying depth region including generation of solitary wavetrain, adiabatic and non-adiabatic transformation of the internal solitary wave.

1.
E.
Støylen
and
F.
Ilker
,
Nonlinear Process. Geophys.
,
21
(
1
)
87
100
(
2014
).
2.
R. D.
Susanto
,
L.
Mitnik
, and
Q.
Zheng
,
Oceanography
18
(
4
)
80
87
(
2005
).
3.
J. A.
Colosi
,
R. C.
Beardsley
,
J. F.
Lynch
,
G.
Gawarkiewicz
,
C.-S.
Chiu
, and
A.
Scotti
,
J. Geophys. Res. Ocean.
,
106
(
C5
)
9587
9601
(
2001
).
4.
J. N.
Moum
,
D. M.
Farmer
,
W. D.
Smyth
,
L.
Armi
, and
S.
Vagle
,
J. Phys. Oceanogr.
,
33
(
10
)
2093
2112
(
2003
).
5.
J. D.
Nash
and
J. N.
Moum
,
Nature
,
437
(
7057
)
400
403
(
2005
).
6.
J. C. B.
da Silva
,
A. L.
New
,
M. A.
Srokosz
, and
T. J.
Smyth
,
Geophys. Res. Lett.
,
29
(
12
)
10
13
(
2002
).
7.
W.
Alpers
,
Nature
,
314
(
6008
)
245
247
(
1985
).
8.
A. R.
Osborne
and
T. L.
Burch
,
Science (80-.)
,
208
(
4443
)
451
460
(
1980
).
9.
W.
Alpers
,
Ming-Xia
He
,
Kan
Zeng
,
Ling-Fei
Guo
, and
Xiao-Ming
Li
, “
The distribution of internal waves in the East China Sea and the Yellow Sea studied by multi-sensor satellite images
,” in
Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium
,
2005
.
IGARSS ’05
., vol.
7
, pp.
4784
4787
.
10.
D.
Bourgault
and
C.
Richards
,
Am. J. Phys.
,
75
(
7
)
666
670
(
2007
).
11.
T.
Hu
,
L.
Ma
,
J.
Simmen
,
E. S.
Livingston
,
J.-X.
Zhou
, and
F.-H.
Li
, “
Nonlinear Internal Wave Behavior near the South of Hai-Nan Island and Simulating the Effect on Acoustic Propagation
,”
2010
, pp.
183
190
.
12.
T. F.
Duda
 et al.,
IEEE J. Ocean. Eng.
,
29
(
4
)
1105
1130
(
2004
).
13.
X.
Huang
 et al.,
Sci. Rep.
,
6
(
1
)
30041
(
2016
).
14.
M. H.
Alford
 et al.,
Nature
,
521
(
7550
)
65
69
(
2015
).
15.
M. A.
Ablowitz
and
P. A.
Clarkson
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering
.
Cambridge
:
Cambridge University Press
,
1991
.
16.
D. J.
Korteweg
and
G.
de Vries
,
Philos. Mag. Ser. 5
,
39
(
240
)
422
443
(
1895
).
17.
D. J.
Benney
,
J. Math. Phys.
,
45
(
1–4
)
52
63
(
1966
).
18.
T. B.
Benjamin
,
J. Fluid Mech
,
25
241
270
(
1966
).
19.
R.
Grimshaw
,
Internal solitary waves
(
Springer
US
,
2001
), pp.
293
.
20.
R.
Grimshaw
,
E.
Pelinovsky
, and
T.
Talipova
,
Phys. D Nonlinear Phenom.
,
132
(
1–2
)
40
62
(
1999
).
21.
S.
Hamdi
,
B.
Morse
,
B.
Halphen
, and
W.
Schiesser
,
Nat. Hazards
,
57
(
3
)
597
607
(
2011
).
22.
P.
Holloway
,
E.
Pelinovsky
, and
T.
Talipova
,
Internal Tide Transformation and Oceanic Internal Solitary Waves
, no.
April 2006
.
2002
.
23.
J. R.
Apel
,
L. A.
Ostrovsky
,
Y. A.
Stepanyants
, and
J. F.
Lynch
,
J. Acoust. Soc. Am.
,
121
(
2
)
695
(
2007
).
24.
K. R.
Helfrich
and
W. K.
Melville
,
Annu. Rev. Fluid Mech.
,
38
(
1
)
395
425
(
2006
).
25.
V. I.
Vlasenko
and
K.
Hutter
,
Ann. Geophys.
,
20
(
12
)
2087
2103
(
2002
).
26.
Y.
Chung
,
J. Phys. A Math. Theor.
,
42
(
47
) pp.
475002
(
2009
).
27.
S. R.
Massel
,
Internal Gravity Waves in the Shallow Seas
. (
Cham: Springer International Publishing
,
2015
).
28.
T. P.
Stanton
and
L. A.
Ostrovsky
,
Geophys. Res. Lett.
,
25
(
14
)
2695
2698
(
1998
).
29.
R.
Grimshaw
,
E.
Pelinovsky
,
T.
Talipova
, and
O.
Kurkina
,
Nonlinear Process. Geophys.
,
17
(
6
)
633
649
(
2010
).
30.
R.
Grimshaw
,
Environ. Stratif. Flows
,
July
1
27
(
2002
).
31.
R.
Grimshaw
,
GAMM-Mitteilungen
,
30
(
1
)
96
109
(
2007
).
32.
R.
Grimshaw
,
E.
Pelinovsky
,
T.
Talipova
, and
A.
Kurkin
,
J. Phys. Oceanogr.
,
34
(
12
)
2774
2791
(
2004
).
33.
W. E.
Schiesser
,
Math. Comput.
,
60
(
201
)
326
(
1991
).
34.
W. E.
Schiesser
,
Comput. Math. with Appl.
,
28
(
10–12
)
147
154
(
1994
).
35.
T. R.
Marchant
and
N. F.
Smyth
,
IMA J. Appl. Math.
56
(
2
)
157
176
(
1996
).
36.
W. K.
Tiong
,
K. G.
Tay
,
C. T.
Ong
, and
S. N.
Sze
, “
Numerical Solution of the Gardner Equation
,”
Proc. Int. Conf. Comput. Math. Stat.
(
iCMS
2015
), pp.
243
251
.
37.
N. M.
Yazid
,
K. G.
Tay
,
Y. Y.
Choy
,
A. M.
Sudin
,
W. K.
Tiong
, and
C. T.
Ong
,
ARPN J. Eng. Appl. Sci.
,
11
(
18
)
10757
10760
(
2016
).
38.
N. M.
Yazid
,
K. G.
Tay
,
W. K.
Tiong
,
Y. Y.
Choy
,
A. M.
Sudin
, and
C. T.
Ong
,
MATEMATIKA
,
33
(
1
)
35
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.