The Logistic Regression is used to model a relationship between categorical dependent variable and one or more independent variable(s). The Logistic Regression can be divided into three types which are binary, multinomial and ordinal. The binary logistic regression is used when the dependent variable has two categories, while multinomial logistic regression is used when dependent variable has more than two nominal categories. In case when dependent variable has more than two ordinal categories, ordinal logistic regression is more suitable to be used. For all regression models, once the model is fitted, the model should be examined to identify whether it fits the data or not. For multinomial logistic regression, several goodness-of-fit tests are available and can be used to examine the fit model. Recently, the test based on clustering partitioning strategy has been proposed. The proposed test used Ward’s hierarchical clustering method is used to group the data. Thus, the performance of the test using different clustering methods is still vague. This study investigates the performance of goodness-of-fit test based on partitioning clustering strategy using K-Means clustering technique. The power of the test is evaluated using a simulation study via R. The results show that the test using K-Means clustering technique has controlled Type I error. It also has ample power to detect some lack of fit except for highly skewed covariate distribution and omission of interaction term. The application on a real data set confirmed the results obtained in a simulation study.

1.
K. N.
Lewis
,
B. D.
Heckman
, and
L.
Himawan
,
Multinomial logistic regression analysis for differentiating 3 treatment outcome trajectory groups for Headache-associated Disability
. (
PAIN®
,
2011
)
152
(
8
), pp.
1718
1726
.
2.
C. C.
Toner
,
C. J.
Broomhead
,
I. H.
Littlejohn
,
G. S.
Samra
,
J. G.
Powney
,
M. G.
Palazzo
,
S. J.
Evans
, and
L.
Strunin
,
British journal of anaesthesia
76
(
3
), pp.
347
351
(
1996
).
3.
C.
Varga
,
D.
Middleton
,
R.
Walton
,
R.
Savage
,
M. K.
Tighe
,
V.
Allen
,
R.
Ahmed
, and
L.
Rosella
,
BMC public health
12
(
1
), pp.
1
(
2012
).
4.
J.
Roukema
,
R. B.
Van Loenhout
,
E. W.
Steyerberg
,
K. G.
Moons
,
S. E.
Bleeker
, and
H. A.
Moll
, (
Journal of clinical epidemiology
61
(
2
), pp.
135
141
(
2008
).
5.
C. J.
Biesheuvel
,
Y.
Vergouwe
,
E. W.
Steyerberg
,
D. E.
Grobbee
, and
K. G. M
Moons
,
Journal of clinical epidemiology
61
(
2
), pp.
125
134
(
2008
).
6.
K. W.
Yao
,
Q. Y.
He
,
T.
Fei
, and
W.
Jie
,
Journal of Traditional Chinese Medicine
31
(
4
), pp.
273
276
(
2011
).
7.
S. K.
Palei
, and
S. K.
Das
,
Safety Science
47
(
1
), pp.
88
96
(
2009
).
8.
B.
Rosenfeld
, and
S. D.
Penrod
,
Research methods in forensic psychology
, (
John Wiley & Son
,
2011
).
9.
G.
Eke
,
S.
Holttum
, and
M.
Hayward
,
Journal of clinical psychology
68
(
3
), pp.
263
278
(
2012
).
10.
A. B.
Oliver
,
A.
Irimia
, A and
M. D. O.
Alfonso
,
Análisis financier
1
(
118
), pp.
32
40
(
2012
).
11.
H.
Kim
, and
Z.
Gu
,
The Journal of Hospitality Financial Management
14
(
1
), pp.
17
34
(
2006
).
12.
M. N.
Howell
, and
E.
Proctor
,
Journal of Social Service Research
16
(
1-2
): pp.
87
104
(
1993
).
13.
Y.
Wang
,
Computers & Security
24
(
8
), pp.
662
674
(
2005
).
14.
K.
Venkataraman
, and
V.
Uddameri
,
Journal of Hydrology
458
, pp.
16
27
(
2012
).
15.
D. W. Jr.
Hosmer
,
S.
Lemeshow
, and
R. X.
Sturdivant
,
Applied logistic regression (Vol. 398)
, (
John Wiley & Sons
,
2013
).
16.
A. J.
Izenman
,
Modern Multivariate Statistical Techniques: regression, classification, and Manifold Learning
, (
Springer
2008
).
17.
E.
Pulkstenis
, and
T. J.
Robinson
,
Statistics in medicine
23
(
6
), pp.
999
1014
(
2004
).
18.
C. B.
Begg
, and
R.
Gray
,
Biometrika
71
(
1
), pp.
11
18
(
1984
).
19.
J. G.
Pigeon
and
J. F.
Heyse
,
Biometrical Journal
41
(
1
), pp.
71
82
(
1999
).
20.
J. J.
Goeman
, and
S.
Le Cessie
,
Biometrics
62
(
4
), pp.
980
985
(
2006
).
21.
M. W.
Fagerland
,
D. W.
Hosmer
, and
A. M.
Bofin
,
Statistics in medicine
27
(
21
), pp.
4238
4253
(
2008
).
22.
D. W.
Hosmer
, and
S.
Lemesbow
,
9
(
10
), pp.
1043
1069
(
1980
).
23.
H. A.
Hamid
,
B. W.
Yap
,
X. J.
Xie
and
S. H.
Ong
,
Communications in Statistics - Simulation and Computation
47
(
4
), pp.
1039
1055
(
2017
).
24.
X. J.
Xie
, and
A.
Bian
,
JP Journal of Biostatistics
3
(
3
), pp.
225
246
(
2009
).
25.
R.
Xu
, and
D.
Wunsch
,
IEEE Transactions on Neural Networks
16
(
3
), pp.
645
678
(
2005
).
26.
M.
Kaushik
, and
M. B.
Mathur
,
International Journal of Software & Hardware Research in Engineering (IJSHRE)
2
(
6
) (
2014
).
27.
D.
Sisodia
,
L.
Singh
,
S.
Sisodia
, and
K.
Saxena
,
International Journal of Latest Trends in Engineering and Technology (IJLTET)
1
(
3
), pp.
82
87
(
2012
).
28.
M. W.
Fagerland
and
D. W.
Hosmer
,
Statistics in medicine
32
(
13
), pp.
2235
2249
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.