In this study, we calculated the lateral interactions of the nitrogen molecule on the V3C2 surface by the DFT. The calculations were performed using the local density approximation. To calculate the energies of the lateral interactions, we calculated the energy of the cells with different degrees of surface coverage. The results of the calculations showed that lateral interactions are repulsive on the investigated distance range, and their strength decreases monotonically with distance, unlike some other systems with strong binding energy on metals. At distances greater than 2a the mutual orientation of the molecules has little effect on the energy of lateral interactions. Thermodynamic characteristics of the adsorption monolayer has been studied with the SuSMoST code - phase diagram was plotted and adsorption isotherms were analyzed.

1.
B.
Anasori
,
M.R.
Lukatskaya
and
Y.
Gogotsi
,
Nat. Rev. Mat.
2
,
16098
(
2017
).
2.
M.
Naguib
,
V.N.
Mochalin
,
M.W.
Barsoum
and
Y.
Gogotsi
,
Adv. Mater.
26
,
992
1005
(
2014
).
3.
L.
Bai
,
H.
Yin
and
X.
Zhang
,
RSC Adv.
6
,
54999
55006
(
2016
).
4.
G.
Zou
 et al,
J. Mater. Chem. A
4
,
845
854
(
2016
).
5.
O.
Mashtalir
 et al,
J. Mater. Chem. A
2
,
14334
14338
(
2014
).
6.
X.
Zhang
 et al,
J. Mater. Chem. A
4
,
4871
4876
(
2016
).
7.
X.
Xie
,
S.
Chen
,
W.
Ding
,
Y.
Nie
and
Z.
Wei
,
Chem. Comm.
49
,
10112
10114
(
2013
).
8.
Z. W.
Seh
 et al,
ACS Energy Let.
1
,
589
594
(
2016
).
9.
J.
Halim
 et al,
Chem. Mater.
26
,
2374
2381
(
2014
).
10.
Y.
Aierken
,
C.
Sevik
,
O.
Gulseren
,
F. M.
Peeters
and
D.
Cakir
,
J. Mater. Chem. A
6
,
2337
2345
(
2018
).
11.
M.
Naguib
 et al,
Electrochem. Comm.
6
,
1322
1331
(
2012
).
12.
Q.
Meng
 et al,
Nanoscale
10
,
3385
3392
(
2018
).
13.
V.
Ng
 et al,
J. Mater. Chem. A
5
,
3039
3068
(
2017
).
14.
L. M.
Azofra
,
N.
Li
,
D.
MacFarlane
and
C.
Sun
,
Energy Environ. Sci.
9
,
2545
2549
(
2016
).
15.
M.
Appl
,
Ammonia - Ullmann’s Encyclopedia of Industrial Chemistry
, (
Wiley-VCH Verlag GmbH & Co. KgaA
)
2002
. pp.
1054
1066
.
16.
S. H.
Gage
 et al,
Cat. Sci. Tech.
6
,
4059
4076
(
2016
).
17.
W.
Chen
,
J.T.
Muckerman
and
E.
Fujita
,
Chem. Commun.
49
,
8896
8907
(
2013
).
18.
L.
Ma
,
L.R. Lin
Ting
,
V.
Molinari
,
C.
Giordano
and
B.S.
Yeo
,
J. Mater. Chem. A
3
,
24171
24180
(
2015
).
19.
J.-S.
Choi
,
J. M.
Krafft
,
A.
Krzton
and
G.
Djéga-Mariadassou
,
Catal. Lett.
81
,
175
180
(
2002
).
20.
F. H.
Ribeiro
,
M.
Boudart
,
R. A. Dalla
Betta
and
E.
Iglesia
,
J. Catal.
166
,
136
147
(
1991
).
21.
E.
Iglesia
,
J. E.
Baumgartner
,
F. H.
Ribeiro
and
M.
Boudart
,
J. Catal.
75
,
993
1006
(
1991
).
22.
V.A.
Shkurenok
 et al,
AIP Conference Proceedings, Oil and Gas Engineering
1876
,
020005
(
2017
).
23.
A.V.
Myshlyavtsev
and
P.V.
Stishenko
,
Surface Science
642
,
51
57
(
2015
).
24.
H. J.
Yang
,
M.
Trenary
,
M.
Kawai
and
Y.
Kim
,
J. Phys. Chem. Lett.
7
,
4369
4373
(
2016
).
25.
H.J.
Yang
,
T.
Minato
,
M.
Kawai
and
Y.
Kim
,
J. Phys. Chem. C
117
,
16429
16437
(
2013
).
26.
Quantum espresso: Surface Science Modeling and Simulation Toolkit, Available at: http://www.quantum-espresso.org.
27.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
, (
1993
).
28.
Quantum Espresso: Quantum Pseudopotential
, Available at: https://www.quantum-espresso.org/pseudopotentials.
29.
S.
Grimme
.
J. Comp. Chem.
27
, (
2006
).
30.
N.
Marzari
,
D.
Vanderbilt
,
A.
De Vita
and
M. C.
Payne
,
Phys. Rev. Lett.
(
1999
).
31.
Susmost: Surface Science Modeling and Simulation Toolkit
, Available at: http://susmost.com.
32.
V. F.
Fefelov
,
V. A.
Gorbunov
,
A. V.
Myshlyavtsev
and
M. D.
Myshlyavtseva
,
Phys. Rev. E
82
, (
2010
).
33.
S. S.
Akimenko
,
V. F.
Fefelov
,
A. V.
Myshlyavtsev
and
P. V.
Stishenko
,
Phys. Rev. B
97
,
085408
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.