Organic fluorophores containing acetylene spacers have gained significant current interest because of their wide-spread applications in optoelectronics. In this present review, we summarize our recent photophysical understanding on small organic dyes which contain a diacetylene conduit. Diphenylbutadiynes with push-pull substituents exhibited emissions from both locally excited (LE) and intramolecular (ICT) states in non-aqueous media. The LE emission was confined to the normal mode involving C≡C stretching of the diacetylene moiety. Quantum chemical calculations showed that the fluorophores are twisted and the diyne moiety deviates from the usual linearity (sp) in the ICT excited state. The diphenylbutadiynes with an acceptor group at meta position of the phenyl ring produced the lowest absorption energy compared to their ortho and para isomers, which was related to the ‘meta effect’ well-known in organic photochemical reaction. The ‘meta effect’ was not perceived when the chain length (n) was increased (n≥4). Butadiyne bridged pyrene-phenyl hybrid derivatives showed the LE emission originating from the pyrene core, which was in contrast to the observation of the LE emission in the diphenylbutadiynes. The dyes showed aggregate emission in mixed-aqueous solvents. In addition to the solution state emission, the fluorophores exhibited emission in solid powder form and showed reversible fluorescence switching in the solids. The solid state emission of the derivatives was either blue (excitonic coupling) or red (excimeric coupling) shifted with regard to the solution phase emission spectrum, depending on the size of the peripheral aromatic moiety. The diynes containing donor and acceptor peripheries displayed single component white light emission, which was exploited to polar aprotic vapor detection in a polymer film matrix. The photophysical outcomes of the diacetylenic dyes make them a promising class of important π-conjugated organic fluorophores.

1.
M.
Kasha
,
Discuss. Faraday Soc.
9
,
14
19
(
1950
).
2.
E.
Lippert
,
W.
Lueder
,
F.
Moll
,
W.
Naegele
,
H.
Boos
,
H.
Prigge
and
I.
Seibold-Blankenstein
.
Angew. Chem
73
,
695
706
(
1961
).
3.
J. R.
Platt
,
J. Chem. Phys.
17
,
484
495
(
1949
).
4.
E. J.
Meijer
,
C.
Tanase
,
P. W. M.
Blom
,
E.
van Veenendaal
,
B.-H.
Huisman
,
D. M.
de Leeuw
and
T. M.
Klapwijk
,
Appl. Phys. Lett.
80
,
3838
3840
(
2002
).
5.
M.
Goes
,
J. W.
Verhoeven
,
H.
Hofstraat
and
K.
Brunner
,
Chem. Phys. Chem.
4
,
349
358
(
2003
).
6.
R.
Badugu
,
J. R.
Lakowicz
and
C. D.
Geddes
,
J. Am. Chem. Soc.
127
,
3635
3641
(
2005
).
7.
A. N.
Swinburne
,
M. J.
Paterson
,
A.
Beeby
and
J. W.
Steed
,
Chem. Eur.–J.
16
,
2714
2718
(
2010
).
8.
S. I.
Druzhinin
,
N. P.
Ernsting
,
S. A.
Kovalenko
,
L. P.
Lustres
,
T. A.
Senyushkina
and
K. A
Zachariasse
,
J. Phys. Chem. A
110
,
2955
2969
(
2006
).
9.
M.
Park
,
C. H.
Kim
and
T.
Joo
,
J. Phys. Chem. A
117
,
370
377
(
2013
).
10.
S. A.
Kovalenko
,
R.
Schanz
,
T. A.
Senyushkina
and
N. P.
Ernsting
,
Phys. Chem. Chem. Phys.
4
,
703
707
(
2002
).
11.
H.
El-Gezawy
,
W.
Rettig
and
R.
Lapouyade
,
J. Phys. Chem. A
110
,
67
75
(
2006
).
12.
T.
Fujiwara
,
M. Z.
Zgierski
and
E. C.
Lim
,
J. Phys. Chem. A
115
,
586
592
(
2011
).
13.
C.
Wang
,
L. –O.
Pålsson
,
A. S.
Batsanov
and
M. R.
Bryce
,
J. Am. Chem. Soc.
128
,
3789
3799
(
2006
).
14.
L.-O.
Pålsson
,
C.
Wang
,
A. S.
Batsanov
,
S. M.
King
,
A.
Beeby
,
A. P.
Monkman
and
M. R.
Bryce
,
Chem. Eur. J.
16
,
1470
1479
(
2010
).
15.
J.-K.
Fang
,
D.-L.
An
,
K.
Wakamatsu
,
T.
Ishikawa
,
T.
Iwanaga
,
S.
Toyota
,
D.
Matsuo
,
A.
Orita
and
J.
Otera
,
Tetrahedron Letters
51
,
917
920
(
2010
).
16.
A. C.
Benniston
,
A.
Harriman
,
D. J.
Lawrie
and
S. A.
Rostron
,
Eur. J. Org. Chem.
2272
2276
(
2004
).
17.
S.-I.
Kato
,
H.
Noguchi
,
A.
Kobayashi
,
T.
Yoshihara
,
S.
Tobita
and
Y.
Nakamura
,
J. Org. Chem.
77
,
9120
9133
(
2012
).
18.
A. K.
Pati
,
M.
Mohapatra
,
P.
Ghosh
,
S. J.
Gharpure
, and
A. K.
Mishra
,
J. Phys. Chem. A.
117
,
6548
6560
(
2013
).
19.
A. K.
Pati
,
S. J.
Gharpure
, and
A. K.
Mishra
,
Phys. Chem. Chem. Phys.
16
,
14015
14028
(
2014
).
20.
K. S.
Chatterjee
,
A. K.
Pati
, and
A. K.
Mishra
,
J. Org. Chem.
79
,
8715
8722
(
2014
).
21.
A. K.
Pati
,
S. J.
Gharpure
, and
A. K.
Mishra
,
Faraday Discuss.
117
,
213
235
(
2015
).
22.
A. K.
Pati
,
S. J.
Gharpure
, and
A. K.
Mishra
,
J. Phys. Chem. A.
119
,
10481
10493
(
2015
).
23.
A. K.
Pati
,
R.
Jana
,
S. J.
Gharpure
, and
A. K.
Mishra
,
J. Phys. Chem. A.
120
,
5826
5837
(
2016
).
24.
A. K.
Pati
,
S. J.
Gharpure
, and
A. K.
Mishra
,
J. Phys. Chem. A.
119
,
5838
5847
(
2016
).
25.
X.
Ma
,
L.
Yan
,
X.
Wang
,
Q.
Guo
and
A.
Xia
,
Phys. Chem. Chem. Phys.
13
,
17273
17283
(
2011
).
26.
Y.
Nagano
,
T.
Ikoma
,
K.
Akiyama
and
S.
Tero-Kubota
,
J. Am. Chem. Soc.
125
,
14103
14112
(
2003
).
27.
T.
Fujiwara
,
M. Z.
Zgierski
and
E. C.
Lim
,
J. Phys. Chem. A
115
,
586
592
(
2011
).
28.
D. S.
Karpovich
and
G. J.
Blanchard
,
J. Phys. Chem.
,
99
,
3951
3958
(
1995
).
29.
R.
Thomas
,
S.
Varghese
and
G. U.
Kulkarni
,
J. Mater. Chem.
19
,
4401
4406
(
2009
).
30.
R.
Davis
,
N. S. S.
Kumar
,
S.
Abraham
,
C. H.
Suresh
,
N. P.
Rath
,
N.
Tamaoki
and
S.
Das
,
J. Phys. Chem. C
112
,
2137
2146
(
2008
).
31.
Y.
Sonoda
,
M.
Goto
,
S.
Tsuzuki
and
N.
Tamaoki
,
J. Phys. Chem. A
111
,
13441
13451
(
2007
).
32.
F. D.
Lewis
and
J.-S.
Yang
,
J. Phys. Chem. B
101
,
1775
1781
(
1997
).
33.
H.
Wu
,
L.
Ying
,
W.
Yang
and
Y.
Cao
,
Chem. Soc. Rev.
38
,
3391
3400
(
2009
).
34.
B. W.
D’Andrade
and
S. R.
Forrest
,
Adv. Mater.
16
,
1585
1595
(
2004
).
35.
S.
Bhunia
,
N.
Chatterjee
,
S.
Das
,
K. Das
Saha
and
A.
Bhaumik
,
ACS Appl. Mater. Interfaces
6
,
22569
22576
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.