Recent experiments have found new magnetic behaviors, which are different from the parent bulk materials, at the interfaces between 3d and 5d oxides such as SrMnO3 (SMO) and SrIrO3 (SIO). The system is of considerable interest due to the strong spin-orbit coupling in the 5d materials on one hand and the double exchange physics in SMO on the other, which belongs to the class of the colossal magnetoresistive (CMR) manganites. In order to gain insight into the physics of the system, we have performed density-functional studies on a selected interface structure, viz., the (SMO)1(SIO)1 superlattice, which has been experimentally grown and studied. Our density-functional results show that the interfacial magnetism is controlled by a net charge transfer at the interface from the SIO to the SMO side, turning both of them into ferromagnetic metal from the original antiferromagnetic insulating state in the bulk. The transferred electrons to the SMO side make it ferromagnetic through the Anderson-Hasegawa double exchange interaction, while the SIO part becomes ferromagnetic due to the doping of the half-filled Mott-Hubbard insulator as suggested by the Nagaoka Theorem. Our results are discussed in the context of the experiments for the same structure.

1.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
,
Rev. Mod. Phys.
70
,
1039
(
1998
).
2.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature
442
,
759
(
2006
).
3.
M. J.
Lawler
,
A.
Paramekanti
,
Y. B.
Kim
, and
L.
Balents
,
Phys. Rev. Lett.
101
,
197202
(
2008
).
4.
M. B.
Salamon
and
M.
Jaime
,
Rev. Mod. Phys.
73
,
583
(
2001
).
6.
J.
Nichols
,
X.
Gao
,
S.
Lee
,
T. L.
Meyer
,
J. W.
Freeland
,
V.
Lauter
,
D.
Yi
,
J.
Liu
,
D.
Haskel
,
J. R.
Petrie
,
E.-J.
Guo
,
A.
Herklotz
,
D.
Lee
,
T. Z.
Ward
,
G.
Eres
,
M. R.
Fitzsimmons
, and
H. N.
Lee
,
Nat. Commun.
7
,
12721
(
2016
).
7.
J.
Matsuno
,
K.
Ihara
,
S.
Yamamura
,
H.
Wadati
,
K.
Ishii
,
V. V.
Shankar
,
H.-Y.
Kee
, and
H.
Takag
,
Phys. Rev. Lett.
114
,
247209
(
2015
).
8.
F.
Wei
and
Y.
Seiji
,
J. Phys. Conf. Ser.
592
,
012139
012145
(
2015
).
9.
M. A.
Zeb
and
H.-Y.
Kee
,
Phys. Rev. B
86
,
085149
(
2012
).
10.
S.
Okamoto
,
J.
Nichols
,
C.
Sohn
,
S. Y.
Kim
,
T. W.
Noh
, and
H. N.
Lee
,
Nano Lett.
17
,
2126
2130
(
2017
).
11.
T.
Takeda
and
S.
Ohara
,
J. Phys. Soc. Jpn.
37
,
275
(
1974
).
12.
J. M.
Longo
,
J. A.
Kafalas
, and
R. J.
Arnott
,
J. Solid State Chem.
3
,
174
(
1971
).
13.
J. G.
Zhao
,
L. X.
Yang
,
Y.
Yu
,
F. Y.
Li
,
R. C.
Yu
,
Z.
Fang
,
L. C.
Chen
, and
C. Q.
Jin
,
J. Appl. Phys.
103
,
103706
. (
2008
).
14.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
15.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
16.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
17.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
18.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
19.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
20.
H.
Zheng
,
J.
Terzic
,
F.
Ye
,
X. G.
Wan
,
D.
Wang
,
J.
Wang
,
X.
Wang
,
P.
Schlottmann
,
S. J.
Yuan
, and
G.
Cao
,
Phys. Rev. B
93
,
235157
(
2016
).
21.
A.
Ohtomo
and
H.
Hwang
,
Nature (London)
427
,
423
(
2004
).
22.
A.
Brinkman
,
M.
Huijben
,
M.
van Zalk
,
J.
Huijben
,
U.
Zeitler
,
J. C.
Maan
,
W. G.
van der Wiel
,
G.
Rijnders
,
D. H. A.
Blank
, and
H.
Hilgenkamp
,
Nature Mater.
6
,
493
(
2007
).
23.
Z. S.
Popović
,
S.
Satpathy
, and
R. M.
Martin
,
Phys. Rev. Lett.
101
,
256801
(
2008
).
24.
P.
Anderson
and
H.
Hasegawa
,
Phys. Rev.
100
,
675
(
1955
).
25.
P.-G.
de Gennes
,
Phys. Rev.
118
,
141
(
1960
).
26.
B. R. K.
Nanda
,
S.
Satpathy
, and
M. S.
Springborg
,
Phys. Rev. Lett.
98
,
216804
(
2007
).
27.
28.
J. M.
Kurdestany
and
S.
Satpathy
,
Phys. Rev. B
96
,
085132
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.