Carbon materials, particularly in their nanostructured forms, find many applications in various energy and environmental technologies. They are used as transparent conducting layers and as active additives in optoelectronic and photovoltaic structures, as electrode components in electrochemical energy storage systems, and as catalysts or catalyst supports in electrochemical and chemical processes. Other applications include hydrogen and methane storage, as well as, filters and sorbents, for water purification, contaminant removal, desalination, or oil spill cleanups. The performance of nanostructured carbons can be enhanced by fabricating them in a form of advanced, three-dimensional (3D) architectures, which enable additional functionalities, including high specific surface area and porosity, improved pathways for electronic and ionic transport, ease of doping and surface functionalization, etc.. Here, we report our recent efforts on fabrication and characterization of high performance 3D carbons. In particular, we have developed a simple and scalable nanocarbon carbon synthesis method based on thermolysis and catalytic templating of inexpensive carbon precursors. The application of this method for the synthesis of undoped and nitrogen-doped 3D carbons in the form of carbon nanocages and multilayer graphene foams is discussed and example results of characterization of these materials are presented.

1.
T.
Lin
,
I.-W.
Chen
,
F.
Liu
,
C.
Yang
,
H.
Bi
,
F.
Xu
and
F.
Huang
,
Science
350
(
6267
),
1508
1513
(
2015
).
2.
M.
Sevilla
and
R.
Mokaya
,
Energy & Environmental Science
7
(
4
),
1250
1280
(
2014
).
3.
H.
Wang
,
X.
Yuan
,
G.
Zeng
,
Y.
Wu
,
Y.
Liu
,
Q.
Jiang
and
S.
Gu
,
Advances in colloid and interface science
221
,
41
59
(
2015
).
4.
R.
Raccichini
,
A.
Varzi
,
S.
Passerini
and
B.
Scrosati
,
Nature materials
14
(
3
),
271
(
2015
).
5.
Y.-J.
Wang
,
N.
Zhao
,
B.
Fang
,
H.
Li
,
X. T.
Bi
and
H.
Wang
,
Chemical reviews
115
(
9
),
3433
3467
(
2015
).
6.
X.
Wang
and
G.
Shi
,
Energy & Environmental Science
8
(
3
),
790
823
(
2015
).
7.
L.
Kuhn
and
N. E.
Gorji
,
Materials Letters
171
,
323
326
(
2016
).
8.
Y. J.
Sa
,
C.
Park
,
H. Y.
Jeong
,
S. H.
Park
,
Z.
Lee
,
K. T.
Kim
,
G. G.
Park
and
S. H.
Joo
,
Angewandte Chemie
126
(
16
),
4186
4190
(
2014
).
9.
J.
Shui
,
M.
Wang
,
F.
Du
and
L.
Dai
,
Science Advances
1
(
1
),
e1400129
(
2015
).
10.
H.
Huang
and
X.
Wang
,
Journal of Materials Chemistry A
2
(
18
),
6266
6291
(
2014
).
11.
Y.
Yang
,
K.
Chiang
and
N.
Burke
,
Catalysis Today
178
(
1
),
197
205
(
2011
).
12.
S. C.
Smith
and
D. F.
Rodrigues
,
Carbon
91
,
122
143
(
2015
).
13.
F.
Yu
,
Y.
Li
,
S.
Han
and
J.
Ma
,
Chemosphere
153
,
365
385
(
2016
).
14.
J.
Ren
,
N. M.
Musyoka
,
H. W.
Langmi
,
M.
Mathe
and
S.
Liao
,
International Journal of Hydrogen Energy
42
(
1
),
289
311
(
2017
).
15.
A.
Yamashita
,
Y.
Mori
,
T.
Oshima
and
Y.
Baba
,
Carbon
76
,
469
(
2014
).
16.
D.
Ziolkowska
,
J.
Jangam
,
G.
Rudakov
,
T.
Paronyan
,
M.
Akhtar
,
G.
Sumanasekera
and
J.
Jasinski
,
Carbon
115
,
617
624
(
2017
).
17.
J.
Jasinski
,
G.
Sumanasekera
,
D.
Ziolkowska
,
J.
Jangam
,
V.
Henner
and
B.
Kumar
, U. S. Patent Application No. PCT/US16/51730 (September 15,
2016
).
This content is only available via PDF.
You do not currently have access to this content.