In the present investigation CdZn(SeTe)2 thin films were successfully synthesized via a simple and cost effective arrested precipitation technique (APT). It was found that the tellurium play an important role in determining the optostructural, morphological, compositional and photoelectrochemical (PEC) performance of CdZn(SeTe)2 thin films. The optical absorption analysis indicates the direct allowed type transitions and band gap of CdZn(SeTe)2 thin films were change with respect to Te content. X-ray diffraction (XRD) studies revealed that the films were nanocrystalline in nature with rhombohedra and hexagonal crystal structure. The surface morphology of CdZn(SeTe)2 thin films were scanned by employing scanning electron microscopy (SEM) and morphology get improved with respect to Te content. Compositional analysis of all samples was carried out using energy dispersive X-ray spectroscopy (EDS) which confirms the presence of elements in CdZn(SeTe)2 thin films. Finally prepared electrodes were tested for their PEC performance in polysulphide electrolyte. It was observed that CdZn(SeTe)2 nanorods exhibits the best photovoltaic performance.

1.
T. J.
Kucharski
,
Y.
Tian
,
S.
Akbulatov
and
R.
Boulatov
Energy Environ Sci
4
,
4449
4472
(
2011
).
2.
W.
Wang
,
M. O.
Tade
and
Z.
Shao
,
Chem Soc Rev
44
,
5371
5408
(
2015
).
3.
Y.
Qu
and
X.
Duan
,
J Mater Chem
22
,
16171
16181
(
2012
).
4.
P.
Sundarraj
,
D.
Maity
,
S.S.
Roy
and
R. A.
Taylor
,
RSC Adv.
4
,
46860
46874
(
2014
).
5.
H.
Azimi
,
Y.
Hou
,
C.J.
Brabe
,
Energy Environ. Sci.
7
,
1829
1849
(
2014
).
6.
Y.H.
Kim
,
J.H.
Lee
,
D.W.
Shin
,
S.M.
Park
,
J.S.
Moon
,
J.G.
Nam
and
J.B.
Yoo
,
Chem. Commun.
46
,
2292
2294
(
2010
).
7.
M.
Mohamed
and
M.A.
Rahim
,
Mater. Sci. Semicond. Process
27
,
288
292
(
2014
).
8.
J.
Wang
,
Q.
Li
,
Y.
Mu
,
X.
Zhou
,
L.
Yang
,
P.
Lv
,
S.
Su
,
J.
Niu
,
W.
Fu
and
H.
Yang
,
RSC Adv.
5
43016
43022
(
2015
).
9.
M.
Bouroushian
,
T.
Kosanovic
,
D.
Karoussos
and
N.
Spyrellis
,
Electrochimica. Acta
54
,
2522
2528
(
2009
).
10.
S.
Chauhan
and
P.
Rajaram
,
Sol. Energ. Mat. Sol. Cells
92
,
550
557
(
2008
).
11.
R.
Mohanraman
,
R.
Sankar
,
K.M.
Boopathi
,
F.C.
Chou
,
C.W.
Chu
,
C.H.
Lee
and
Y.Y.
Chen
,
Mater. Chem. A
2
,
2839
2844
(
2014
).
12.
J.
Li
,
Y.
Xia
,
B.
Liu
,
G.
Feng
,
Z.
Song
,
D.
Gao
,
Z.
Xu
,
W.
Wang
,
Y.
Chan
and
S.
Feng
,
Appl. Surf. Sci.
378
,
163
166
(
2016
).
13.
A.
Zappettini
,
L.
Marchini
,
M.
Zha
,
G.
Piacentini
,
N.
Zambelli
,
G.
Benassi
and
D.
Calestani
,
CrystEngComm
15
,
2227
2231
(
2013
).
14.
X.
Wang
,
Y.
Xu
,
R.
Tong
,
X.
Zhou
,
Q.
Li
and
H.
Wang
,
CrystEngComm
17
,
960
966
(
2015
).
15.
J.
Gao
,
X.
Di
,
W.
Li
,
L.
Feng
,
J.
Zhang
,
L.
Wu
,
B.
Li
,
W.
Wang
,
G.
Zeng
and
J.
Yang
,
Thin Solid Films
550
,
638
642
(
2014
).
16.
K.M.
Ryan
,
S.
Singh
and
P.
Liu
,
CrystEngComm
16
,
9446
9454
(
2014
).
17.
J.M.
Lin
,
Y.C.
Chen
,
C.P.
Lin
,
H.C.
Chien
,
C.Y.
Wen
,
J.Y.
Chang
and
Z.Y.
Zhan
,
Microelectron Eng.
148
,
51
54
(
2015
).
18.
S.K.
Shinde
D.P.
Dubal
,
G.S.
Ghodake
and
V.J.
Fulari
,
Mat. Lett.
126
,
17
19
(
2014
).
19.
K.
Davami
,
B.
Mortazavi
,
H.M.
Ghassemi
,
R.S.
Yassar
,
J.S.
Lee
,
Y.
Remond
and
M.A.
Meyyappan
,
Nanoscale
4
,
897
903
(
2012
).
20.
C. S.
Bagade
,
S.S.
Mali
,
V. B.
Ghanwat
,
K.V.
Khot
,
P.B.
Patil
,
S. D.
Kharade
,
R.M.
Mane
,
N. D.
Desai
,
C. K.
Hong
,
P.S.
Patil
,
P. N.
Bhosale
,
RSC Adv.
5
,
55658
55668
(
2015
).
21.
A. M.
Acevedo
,
Sol. Energ. Mat. Sol. Cells
95
,
2837
2841
(
2011
).
22.
C. S.
Bagade
,
V. B.
Ghanwat
,
S. S.
Mali
,
K. V.
Khot
,
C. K.
Hong
and
P. N.
Bhosale
,
J Mater Sci: Mater Electron
27
,
5867
58668
(
2016
).
23.
H.
Choi
,
T.H.
Kim
,
J.
Chae
,
J.
Baeck
,
C.S.
Kee
,
K.H.
Jeong
,
H.S.
Jeong
,
C.
Kang
and
M.H.
Cho
,
Nanoscale
7
,
14924
14936
(
2015
).
24.
J.
Wang
,
Q.
Li
,
Y.
Mu
,
S.
Li
,
L.
Yang
,
P.
Lv
,
S.
Su
,
T.
Liu
,
W.
Fu
and
H.
Yang
,
J. Alloy Compd.
636
,
97
101
(
2015
).
25.
R.S.
Makala
,
K.
Jagannadham
,
B.C.
Sales
,
J. Appl. Phys.
94
,
3907
3911
(
2003
)
This content is only available via PDF.
You do not currently have access to this content.