The risk of the exposition of people to the high temperature and radiative heat flux is common in many professions and motor sports. Usually these conditions are very rare and occur for a short period of time during the emergency situation. Usually, for the majority of time, normal or routine (elevated) conditions are prevailing. Therefore, the multilayer protective garments, which in case of emergency events are designed to guard people from thermal stresses and injuries (burns), have to ensure the wearing comfort during the regular activities. Important parameters used in the assessment of the protective clothing microclimate are the temperature and relative humidity close to the skin surface and in the air gap which is naturally present between the inner fabric surface and the skin. The paper presents a model for the coupled heat and water transport in the skin. The model accounts for bioheat transfer with blood perfusion and metabolic heat generation in a tissue. Moreover, the water transport (epidermal water loss, EWL) through the thin stratum corneum (SC) between the body interior and the surroundings as well as presence of a sweat at the skin surface are included. The skin model was subsequently combined with the previously developed heat and moisture transfer model in the air gap and layers of the protective garment. The whole model was then applied to study the multilayer protective clothing microclimate under normal and routine (elevated) thermal loads. The clothing heating resulted in increase of the air gap and skin surface temperature and decrease of the relative humidity in the air gap. This triggers the rise in the EWL flux.

1.
H.
Mäkinen
, “Firefighter’s protective clothing” in
Textiles for Protection
, edited by
Scott
RA
(
Cambridge
,
Woodhead
,
2005
), pp.
622
647
.
2.
P.
Chitrphiromsri
and
A. V.
Kuznetsov
,
Heat Mass Transfer
41
,
206
215
(
2005
).
3.
G.
Song
, et al.,
Int. J. Occup. Saf. Ergon.
14
,
89
106
(
2008
).
4.
F.
Zhu
, et al.,
Text. Res. J.
79
,
205
212
(
2009
).
5.
F.
Zhu
and
K.
Li
,
Fire Technol.
47
,
801
819
(
2011
).
6.
A.
Ghazy
and
D. J.
Bergstrom
,
Numer. Heat Tr. A
61
,
569
593
(
2012
).
7.
P.
Łapka
, et al.,
J. Phys. Conf. Ser.
676
,
012014
(
2016
).
8.
P.
Łapka
, et al.,
Procedia Eng.
157
,
72
81
(
2016
).
9.
P.
Łapka
, et al.,
Int. J. Numer. Methods Heat Fluid Flow
27
,
1078
1097
(
2017
).
10.
P.
Łapka
, et al.,
AIP Conf. Proc.
1790
,
070002
(
2016
).
11.
P.
Łapka
and
P.
Furmański
,
J. Phys. Conf. Ser.
745
,
032075
(
2016
).
12.
P.
Łapka
and
P.
Furmański
,
Heat Mass Transfer
(
2018
), DOI: .
13.
P.
Łapka
and
P.
Furmański
,
Przem. Chem.
96
,
343
347
(
2017
).
14.
P.
Furmański
and
P.
Łapka
,
Int. J. Heat Mass Transfer
114
,
1331
1340
(
2017
).
15.
M.
Fu
 et al.,
Int. J. Therm. Sci.
96
,
201
210
(
2015
).
16.
Udayraj
and
F.
Wang
,
Int. J. Heat Mass Transfer
130
,
28
46
(
2018
).
17.
E.
Onofrei
, et al.,
J. Ind. Text.
45
,
222
238
(
2015
).
18.
Y.
Su
, et al.,
Appl. Therm. Eng.
93
,
1295
1303
(
2016
).
19.
L. A.
Dombrovsky
, et al.,
Int. J. Heat Mass Tran.
55
,
4688
4700
(
2012
).
20.
J. R.
Howell
, et al.,
Thermal Radiation Heat Transfer
(
CRC Press
,
Boca Raton
,
1992
).
21.
P.
Łapka
and
P.
Furmański
,
Int. J. Heat Mass Tran.
55
,
4941
4952
(
2012
).
22.
P.
Łapka
and
P.
Furmański
,
Int. J. Heat Mass Tran.
55
,
4953
4964
(
2012
).
23.
X.
Li
, et al.,
Chem. Eng. Sci.
138
,
164
172
(
2015
).
24.
M.
Saadatmand
, et al.,
Skin Res. Technol.
23
,
500
513
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.