In this study describes the fluorescein methacrylate (FMA) used as fluorescence functional monomer in the synthesis of caffeine-imprinted fluorescence polymers (Caf-FMIP) for the selective recognition of caffeine. The Caf-FMIP was synthesized using bulk polymerization with non-covalent imprinting approach and the formation of ˗NH groups had interaction with caffeine and FMA moieties was confirmed by using Fourier transform infrared spectroscopy (FT-IR). The absorption isotherm analysis of Caf-FMIP favors Freundlich model suggested the forming heterogeneous surface was occurred due to non-covalent imprinting approach. Fluorescence emissions of synthesized Caf-FMIP were ‘switched on’ in the presence of target molecule based on photo-induce electron transfer (PET) mechanism. In addition, Caf-FMIP fluorescence was enhanced more strongly by caffeine compared to non-imprinted polymer, which indicated that caffeine could recognized by the Caf-FMIP selectively.

1.
K.
Muzyka
,
K.
Karim
,
A.
Guerreiro
,
A.
Poma
, and
S.
Piletsky
,
Nanoscale Res. Lett.
9
,
154
(
2014
).
2.
Q.
Deng
,
J.
Wu
,
X.
Zhai
,
G.
Fang
, and
S.
Wang
,
Sensors (Basel)
.
13
,
12994
(
2013
).
3.
K.
Tsukagoshi
,
M.
Murata
, and
M.
Maeda
,
Chapter 9 Imprinting Polymerisation for Recognition and Separation of Metal Ions
(
Elsevier Masson SAS
,
2000
).
4.
Y.T.
Wu
,
Y. jie
Liu
,
X.
Gao
,
K. chun
Gao
,
H.
Xia
,
M. fang
Luo
,
X. juan
Wang
,
L.
Ye
,
Y.
Shi
, and
B.
Lu
,
Chemosphere
119
,
515
(
2015
).
5.
H.
Niu
,
Y.
Yang
, and
H.
Zhang
,
Biosens. Bioelectron
.
74
,
440
(
2015
).
6.
M.X.
Feng
,
G.N.
Wang
,
K.
Yang
,
H.Z.
Liu
, and
J.P.
Wang
,
Food Control
69
,
171
(
2016
).
7.
R.
Gao
,
Y.
Hao
,
L.
Zhang
,
X.
Cui
,
D.
Liu
,
M.
Zhang
,
Y.
Tang
, and
Y.
Zheng
,
Chem. Eng. J.
284
,
139
(
2016
).
8.
W.
Wan
,
S.
Wagner
, and
K.
Rurack
, (
2015
).
9.
P.
Cywinski
,
J. Phys. Chem. Biophys.
3
,
1
(
2013
).
10.
Y.
Mao
,
Y.
Bao
,
D.
Han
,
F.
Li
, and
L.
Niu
,
Biosens. Bioelectron
.
38
,
55
(
2012
).
11.
L.
Tan
,
K.
Chen
,
C.
Huang
,
R.
Peng
,
X.
Luo
,
R.
Yang
,
Y.
Cheng
, and
Y.
Tang
,
Microchim. Acta
182
,
2615
(
2015
).
12.
B.
The
,
M.
Seo
,
X.
Zhang
, and
Y.
Lee
,
Biosens. Bioelectron
.
57
,
310
(
2014
).
13.
A.M.
Breul
,
M.D.
Hager
, and
U.S.
Schubert
,
Chem. Soc. Rev.
42
,
5366
(
2013
).
14.
V.
Bojinov
and
N.
Georgiev
,
3
(
2011
).
15.
S.
Rouhani
and
F.
Nahavandifard
,
Sensors Actuators B. Chem.
197
,
185
(
2014
).
16.
T.N.
Konstantinova
,
P.
Meallier
, and
I.
Grabchev
,
Dye. Pigment.
22
,
191
(
1993
).
17.
X.
Wei
,
T.
Hao
,
Y.
Xu
,
K.
Lu
,
H.
Li
,
Y.
Yan
, and
Z.
Zhou
,
Sensors Actuators B Chem.
224
,
315
(
2016
).
18.
J.A.
Esquivel-Guzmán
,
G.
Zaragoza-Galán
,
J.
Ortíz-Palacios
, and
E.
Rivera
,
Des. Monomers Polym.
15
,
561
, (
2012
).
19.
G.
Urbain
,
252
, (
1916
).
20.
J.A.
Garcia-Calzon
and
M.E.
Diaz-Garcia
,
Sensors Actuators, B Chem.
123
,
1180
(
2007
).
21.
W.S.W.
Ngah
,
M.A.K.M.
Hanafiah
, and
S.S.
Yong
,
65
,
18
(
2008
).
22.
A.M.
Rampey
,
R.J.
Umpleby
,
G.T.
Rushton
,
J.C.
Iseman
,
R.N.
Shah
, and
K.D.
Shimizu
,
76
,
1123
(
2004
).
23.
C.
He
,
Y.
Long
,
J.
Pan
,
K.
Li
, and
F.
Liu
,
70
,
133
(
2007
).
24.
A.P.
De Silva
,
S.
Moody
, and
G.D.
Wright
,
2385
(
2009
).
25.
A.
Nehlig
,
Neurosci. Biobehav. Rev.
23
,
563
(
1999
).
26.
A.
Weller
, (n.d.).
27.
A.P.
De Silva
,
D.B.
Fox
,
T.S.
Moody
, and
S.M.
Weir
,
Trends Biotechnol.
19
,
29
(
2001
).
28.
D.
Li
,
X.
He
,
Y.
Chen
,
W.
Li
, and
Y.
Zhang
, (
2013
).
This content is only available via PDF.
You do not currently have access to this content.