A fully calibrated and validated TGA-GC–MS is proposed for the quantitative analysis of diethylphosphate- end capped polymers. It allows the determination of the amount of phosphorous in polymeric samples and also thedetermination of the number of repeating units per chain end. Since no sample pretreatments are required polymeric films supported on inert substrates can be directly analyzed even in ultrathinfilms with thickness of few tens of nanometers. Finally, the chromatographic profile of the species evolving during the thermal degradation depend on the polymeric film thickness allowing that information concerning the polymer stability anddegradation mechanism at different size scale can be obtained. Considering the widespread interest for thin and ultrathin films of polymers containing phosphorous groupsfor brush-based technologies, the proposed method can be helpful in various areas, including flame retardantmaterial, healthcare and medicine, microelectronic, for facile and precise characterization of functional interfaces.

1.
S.
Monge
,
G.
David
, RSC Polymer Chemistry Series,
Royal Society of Chemistry
,
Cambridge
,
2014
.
2.
T.
Xu
,
L.
Zhang
,
Z.
Cheng
,
X.
Zhu
Sci. China Chem.
58
,
1633
1640
(
2015
).
3.
J.
Canadell
,
B.J.
Hunt
,
A.G.
Cook
,
A.
Mantecón
,
V.
Cádiz
Polym. Degrad. Stab.
92
1482
1490
(
2007
).
4.
K.
Dai
,
L.
Song
,
R.K.K.
Yuen
,
S.
Jiang
,
H.
Pan
,
Y.
Hu
Ind. Eng. Chem. Res.
51
,
15918
15926
(
2012
).
5.
D.
Markova
,
A.
Kumar
,
M.
Klapper
,
K.
Müllen
,
Polymer
50
,
3411
3421
(
2009
).
6.
D
Grojo
,
L
Boarino
,
N
De Leo
,
R
Rocci
,
G
Panzarasa
,
P
Delaporte
,
M
Laus
and
K
Sparnacci
,
Nanotechnology
,
23
,
485305
(
2012
).
7.
T.
Higashihara
,
M.
Ueda
,
Macromolecules
48
,
1915
1929
(
2015
).
8.
M.L.
Hoarfrost
,
K.
Takei
,
V.
Ho
,
A.
Heitsch
,
P.
Trefonas
,
A.
Javey
, et al,
J. Phys. Chem. Lett.
4
,
3741
3746
(
2013
).
9.
G.
Seguini
,
T.J.
Giammaria
,
F.
FerrareseLupi
,
K.
Sparnacci
,
D.
Antonioli
,
V.
Gianotti
,
F.
Vita
,
I.F.
Placentino
,
J.
Hilhorst
,
C.
Ferrero
,
O.
Francescangeli
,
M.
Laus
,
M.
Perego
,
Nanotechnology
,
25
,
04530
(
2014
).
10.
F.
FerrareseLupi
,
T.J.
Giammaria
,
G.
Seguini
,
M.
Ceresoli
,
M.
Perego
,
D.
Antonioli
,
V.
Gianotti
,
K.
Sparnacci
,
M.
Laus
,
J. Mater. Chem. C
2
,
4909
4917
(
2014
)
11.
J.
Huang
,
K.
Matyjaszewski
,
Macromolecules
38
,
3577
3583
(
2005
).
12.
L.
MacArie
,
G.
Ilia
,
Prog. Polym. Sci.
35
,
1078
1092
(
2010
).
13.
B.
Canniccioni
,
S.
Monge
,
G.
David
,
J.J.
Robin
,
Polym. Chem.
4
,
3676
(
2013
).
14.
T.
Alphazan
,
L.
Mathey
,
M.
Schwarzwälder
,
T.H.
Lin
,
A.J.
Rossini
, et al,
Chem. Mater.
28
,
3634
3640
(
2016
).
15.
I.C.
McNeill
,
J. Anal. Appl. Pyrolysis
40–41
,
21
41
(
1997
).
16.
V.
Gianotti
,
D.
Antonioli
,
K.
Sparnacci
,
M.
Laus
,
T.J.
Giammaria
, et al,
J. Chromatogr. A
1386
,
204
210
(
2014
).
17.
D.
Antonioli
,
K.
Sparnacci
,
M.
Laus
,
F.
FerrareseLupi
,
T.J.
Giammaria
,
G.
Seguini
, et al,
Anal. Bioanal. Chem.
408
,
3155
3163
(
2016
).
18.
E.
Conterosito
,
L.
Palin
,
D.
Antonioli
,
D.
Viterbo
,
E.
Mugnaioli
,
U.
Kolb
, et al,
Chem. Eur. J.
21
,
14975
14986
(
2015
).
19.
V.
Gianotti
,
D.
Antonioli
,
K.
Sparnacci
,
M.
Laus
,
T.J.
Giammaria
,
F.
FerrareseLupi
, et al,
Macromolecules
46
,
8224
8234
(
2013
).
20.
M.
Ceresoli
,
M.
Palermo
,
F.
FerrareseLupi
,
G.
Seguini
,
M.
Perego
,
G.
Zuccheri
, et al,
Nanotechnology
26
,
415603
(
2015
).
21.
K.
Sparnacci
,
D.
Antonioli
,
V.
Gianotti
,
M.
Laus
,
G.
Zuccheri
,
F. Ferrarese
Lupi
, et al,
ACS Appl. Mater. Interfaces
7
,
3920
3930
(
2015
).
22.
A.
Alberti
,
M.
Benaglia
,
M.
Guerra
,
M.
Gulea
,
P.
Hapiot
,
M.
Laus
,
D.
Macciantelli
,
S.
Masson
,
A.
Postma
,
K.
Sparnacci
,
Macromolecules
38
,
7610
7618
(
2005
).
23.
K.
Sparnacci
,
D.
Antonioli
,
V.
Gianotti
,
M.
Laus
,
F. Ferrarese
Lupi
,
T.J.
Giammaria
, et al,
ACS Appl Mater. Interfaces
7
,
10944
10951
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.