Nature-inspired flying robots are beneficial than other multi-rotor or fixed wing analogs, in many aspects. As wings play the key role on the hovering and maneuvering conditions of flying insects, structural functions and aerodynamic performances of the insect wings are needed to be analyzed for designing more effective wings for insect-sized flying robots. This study describes the method for experimental analysis of aerodynamic and vibration characteristics of dragonfly (Erythemis Simplicicollis) forewings and hindwings. Vibration testing of the dragonfly wings has been conducted to obtain natural frequencies and mode shapes of the wings. The wings have also been examined in a suction wind tunnel having pistol-grip sting balance to illustrate the vibration and aerodynamic characteristics. The structural aerodynamic response of the wing has been determined at different freestream velocities and at different angles of attack. From the experimental results, the deformation response and the coefficients of drag and lift of the insect wings have been obtained for different Reynolds numbers and angles of attack. The coefficient of lift of the wings increases with the Reynolds number and angle of attack. The coefficient of drag of the wings also increases with the Reynolds number and angle of attack.

1.
H.
Rajabi
,
M.
Rezasefat
,
A.
Darvizeh
,
J.H.
Dirks
,
Sh.
Eshghi
,
A.
Shafiei
,
T.
Mirzababaie Mostofi
and
S. N.
Gorb
, “
A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings
,”
Appl. Phys. A
122
,
1
13
(
2015
).
2.
G.
Rüppell
, “
Kinematic analysis of symmetrical flight manoeuvres of Odonata
,”
J. Exp. Biol.
144
(
1
),
13
42
(
1989
).
3.
J. M.
Wakeling
and
C. P.
Ellington
, “
Dragonfly flight. III. Lift and power requirements
,”
J. Exp. Biol.
200
(
3
),
583
600
(
1997
).
4.
A.
Vargas
,
R.
Mittal
and
H.
Dong
, “
A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight
,”
Bioinspir. Biomim.
3
(
026004
),
1
13
(
2008
).
5.
S. M.
Walker
,
A. L.
Thomas
and
G. K.
Taylor
, “
Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?
J. R. Soc. Interface
6
,
735
47
(
2009
).
6.
C.
Dileo
and
X.
Deng
, “
Design of and experiments on a dragonfly inspired robot
,”
Adv. Robot.
23
(
7–8
),
1003
1021
(
2009
).
7.
T. M.
Casey
,
M. L.
May
and
K. R.
Morgan
, “
Flight energetics of euglossine bees in relation to morphology and wing stroke frequency
,”
J. Exp. Biol.
116
,
271
89
(
1985
).
8.
J. H.
Marden
,
G. H.
Fitzhugh
,
M.
Wolf
,
K. D.
Arnold
and
B.
Rowan
, “
Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance
,”
Proc. Natl Acad. Sci. USA
96
,
15304
15309
(
1999
).
9.
J. H.
Marden
, “
Variability in the size, composition, and function of insect flight muscles
,”
Annu. Rev. Physiol.
62
,
157
78
(
2000
).
10.
H.
Rajabi
,
A.
Shafiei
,
A.
Darvizeh
and
H.
Babaei
, “
Experimental and Numerical Investigations of Crack Propagation in Dragonfly Wing Veins
,”
ASJR-ME.
48
(
2
),
61
64
(
2016
).
11.
S. R.
Jongerius
and
D.
Lentink
, “
Structural analysis of a dragonfly wing
,”
Exp. Mech.
50
(
9
),
1323
1334
(
2010
).
12.
A. B.
Kesel
, “
Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils
,”
J. Exp. Biol.
203
(
20
),
3125
3135
(
2000
).
13.
M.
Vanella
,
T.
Fitzgerald
,
S.
Preidikman
,
E.
Balaras
and
B.
Balachandran
, “
Influence of flexibility on the aerodynamic performance of a hovering wing
,”
J. Exp. Biol.
212
(
1
),
95
105
(
2009
).
14.
H. H.
Ren
,
X. S.
Wang
,
Y. L.
Chen
and
X. D.
Li
, “
Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation
,”
Chin. Phys. B
21
(
3
),
034501
10
(
2012
).
15.
S.
Sunada
,
L.
Zeng
and
K.
Kawachi
, “
The relationship between dragonfly wing structure and torsional deformation
,”
J. Theor. Biol.
193
(
1
),
39
45
(
1998
).
16.
R. J.
Wootton
, “
Functional morphology of insect wings
,”
Annu. Rev. Entomol.
37
(
1
),
113
140
(
1992
).
17.
S. A.
Combes
and
T. L.
Daniel
, “
Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending
,”
J. Exp. Biol.
206
,
2989
2997
(
2003
).
18.
B.
Yin
and
H.
Luo
, “
Effect of wing inertia on hovering performance of flexible flapping wings
,”
Phys. Fluids
22
,
1
10
(
2010
).
19.
A. R.
Ennos
and
R. J.
Wootton
, “
Functional wing morphology and aerodynamics of Panorpa Germanica (Insecta Mecoptera)
,”
J. Exp. Biol.
143
,
267
284
(
1989
).
20.
R. J.
Wootton
, “
Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta Papilionoidea)
,”
J. Exp. Biol.
40
,
105
117
(
1993
).
21.
J. M.
Wakeling
and
C. P.
Ellington
, “
A Dragonfly flight: I. Gliding flight and steady-state aerodynamic forces
,”
J. Exp. Biol.
200
,
543
56
(
1997
).
23.
D. J.
Inman
,
Engineering Vibration
(
Pearson Education, Inc.
,
New Jersey
,
2014
), pp.
533
540
.
This content is only available via PDF.
You do not currently have access to this content.