In the paper we propose conditions ensuring the central limit theorem (CLT) and the law of the iterated logarithm (LIL) for a certain class of Markov chains. We further use this general criteria to verify the aforementioned limit theorems for a particular disrete-time Markov system. The piecewise-deterministic Markov process defined via interpolation of the explored Markov chain can be used e.g. to describe a model for gene expression. The aim for the future work is to establish the CLT and the LIL for the continuous-time process too.

1.
P.
Hall
and
C. C.
Heyde
,
Martingale limits theory and its applications
(
Academic Press
,
New York
,
1980
).
2.
M.
Hairer
,
Probab. Theory Related Fields
124
,
345
380
(
2002
).
3.
M.
Hairer
,
J. C.
Mattingly
, and
M.
Scheutzow
,
Probab. Theory Related Fields
149
,
223
259
(
2011
).
4.
R.
Kapica
and
M.
Ślęczka
, arXiv 1107.0707v3 (
2017
).
5.
S. C.
Hille
,
K.
Horbacz
,
T.
Szarek
, and
H.
Wojewódka
,
J. Math. Anal. Appl.
443
,
385
408
(
2016
).
6.
K.
Horbacz
,
J. Stat. Phys.
164
,
1261
1291
(
2016
).
7.
S. C.
Hille
,
K.
Horbacz
,
T.
Szarek
, and
H.
Wojewódka
,
Asymptot. Anal.
97
,
91
112
(
2016
).
8.
S. P.
Meyn
and
R. L.
Tweedie
,
Markov chains and stochastic stability
(
Springer-Verlag
,
London
,
1993
).
9.
M.
Maxwell
and
M.
Woodroofe
,
Ann. Probab.
28
,
713
724
(
2000
).
10.
W.
Bołt
,
A. A.
Majewski
, and
T.
Szarek
,
Studia Math.
212
,
41
53
(
2012
).
11.
K.
Horbacz
,
D.
Czapla
, and
H.
Wojewódka
, arXiv 1707.06489 (
2017
).
This content is only available via PDF.
You do not currently have access to this content.