In the paper we propose conditions ensuring the central limit theorem (CLT) and the law of the iterated logarithm (LIL) for a certain class of Markov chains. We further use this general criteria to verify the aforementioned limit theorems for a particular disrete-time Markov system. The piecewise-deterministic Markov process defined via interpolation of the explored Markov chain can be used e.g. to describe a model for gene expression. The aim for the future work is to establish the CLT and the LIL for the continuous-time process too.
REFERENCES
1.
P.
Hall
and C. C.
Heyde
, Martingale limits theory and its applications
(Academic Press
, New York
, 1980
).2.
M.
Hairer
, Probab. Theory Related Fields
124
, 345
–380
(2002
).3.
M.
Hairer
, J. C.
Mattingly
, and M.
Scheutzow
, Probab. Theory Related Fields
149
, 223
–259
(2011
).4.
5.
S. C.
Hille
, K.
Horbacz
, T.
Szarek
, and H.
Wojewódka
, J. Math. Anal. Appl.
443
, 385
–408
(2016
).6.
K.
Horbacz
, J. Stat. Phys.
164
, 1261
–1291
(2016
).7.
S. C.
Hille
, K.
Horbacz
, T.
Szarek
, and H.
Wojewódka
, Asymptot. Anal.
97
, 91
–112
(2016
).8.
S. P.
Meyn
and R. L.
Tweedie
, Markov chains and stochastic stability
(Springer-Verlag
, London
, 1993
).9.
M.
Maxwell
and M.
Woodroofe
, Ann. Probab.
28
, 713
–724
(2000
).10.
W.
Bołt
, A. A.
Majewski
, and T.
Szarek
, Studia Math.
212
, 41
–53
(2012
).11.
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.