We propose that the one-fold selfintersecting center-vortex loop, being the stable excitation in the confining phase of SU(2) Yang-Mills thermodynamics of scale Λ ∼ 0.5 MeV, after an electric-magnetically dual interpretation of this theory represents the electron/positron. Our argument invokes recent results on the physics of a strongly and spherically perturbed’t Hooft-Polyakovmonopole, the role of the central spatial region in a Harrington-Shepard (HS) (anti)caloron, the latter’s deformation towards max-imally non-trivial holonomy and subsequent dissociation into a pair of a screened BPS monopole and antimonopole, the energy-density of the deconfining thermal ground state, and the critical temperature Tc for the deconfining-preconfining transition. We estimate the typical spatial extent of the selfintersection region and the monopole core size, implying that the electron/positron, judged by its Compton wave length, is anything but a point particle. Our results support and elucidate the ideas of Louis de Broglie on the thermodynamics of an isolated particle.

1.
L.
de Broglie
,
The thermodynamics of the isolated particle
(
Gauthier-Villars Editor
,
Paris
,
1964
), pp.
1
98
.
2.
L.
de Broglie
,
Recherches sur la theorie des quanta
(
Ann. de Phys.
, 10th series, t. III,
Paris
,
1925
), pp.
1
73
.
3.
R.
Hofmann
,
The thermodynamics of quantum Yang-Mills theory: theory and applications
(
World Scientific
,
Singapore
,
2016
), pp.
1
522
.
4.
D.
Diakonov
 et al.,
Phys. Rev. D
70
, p.
036003
(
2004
).
5.
B. J.
Harrington
and
H. K.
Shepard
,
Phys. Rev. D
17
, p.
2122
(
1977
).
6.
W.
Nahm
,
Trieste Group Theor. Meth.
1983
, p.
189
(
1983
).
7.
K.
Lee
and
C.
Lu
,
Phys. Rev. D
58
, p.
025011
(
1998
).
8.
T. C.
Kraan
and
P. V.
Baal
,
Phys. Lett. B
428
, p.
268
(
1998
).
9.
T. C.
Kraan
and
P. V.
Baal
,
Nucl. Phys. B
533
, p.
627
(
1998
).
10.
M. K.
Prasad
and
C. M.
Sommerfield
,
Phys. Rev. Lett.
35
, p.
760
(
1975
).
11.
G.
Fodor
and
I.
Racz
,
Phys. Rev. Lett.
92
, p.
151801
(
2004
).
12.
P.
Forgacs
and
M. S.
Volkov
,
Phys. Rev. Lett.
92
, p.
151802
(
2004
).
13.
J.
Ludescher
 et al.,
Ann. d. Phys.
19
, p.
102
(
2010
).
14.
R.
Hofmann
and
D.
Kaviani
,
Quant. Matt.
1
, p.
41
(
2012
).
15.
U.
Herbst
and
R.
Hofmann
,
ISRN High Energy Physics
2012
, p.
373121
(
2012
).
16.
R.
Hofmann
,
Entropy
18
(
9
), p.
310
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.