This Paper combines the Dugdale’s Approach with Extended finite element method (XFEM) in order to estimate the Plastic zone length (PZL) for a straight edge cracked plate (SECP) under uniaxial tensile loading condition. Dugdale utilized a different approach to evaluate the PZL by nullifying the effect of singularity at the tip of the virtually extended crack by the applying a uniform pressure which is equal to the yielding stress. XFEM is utilized for analyzing SECP as it is more efficient and accurate as compared to other conventional numerical tools. In XFEM, crack can be extended without any re-meshing because elements near crack interface need not to conform the crack geometry.PZL for SECP is evaluated for crack length, a, varying in the range of 0.01 to 0.05 (m) in steps of 0.01 and load intensity (σ0/Y) ranging from 0.1 to 0.5 in steps of 0.1. Crack Position (h/H) is also varied ranging from 0 to 0.8 in step of 0.2 in order to analyse its effect on PZL. MATLAB is employed for Extended Finite element analysis of SECP under Plane stress condition. Four node Quadrilateral elementsare used for extended finite element analysis. The numerical results are validated by the experimental results from the available literature.

1.
P.
Kumar
and
K.
Prashant
,
Elements of fracture mechanics
(
Tata McGraw-Hill Education
,
2009
).
2.
S.
Mohammadi
,
Extended finite element method: for fracture analysis of structures
(
John Wiley & Sons
2008
).
3.
A.
Gonzalez-Herrera
and
J.
Zapatero
,
Engineering Fracture Mechanics
75
,
4513
4528
(
2008
)..
4.
D.
Camas
,
J.
Garcia-Manrique
and
A.
Gonzalez-Herrera
,
International Journal of Fatigue
33
,
921
928
(
2011
).
5.
F.
Caputo
,
G.
Lamanna
and
A.
Soprano
,
Engineering Fracture Mechanics
103
,
162
173
(
2013
).
6.
S. R.
Daniewicz
, Collins, and
D. R.
Houser
,
International journal of fatigue
16
,
123
133
(
1994
).
7.
M.
Hajali
,
C.
Abishdid
,
S.
Johansson
, and,
J.
Moverare
, “
Evaluation of the Mode I Plastic Zone Size at the Crack Tip Using RKPM and FEM
”. In CP2012.
8.
W.
Becker
, and
D.
Gross
,
International Journal of Fracture
37
,
163
170
(
1988
).
9.
H. J.
Petroski
,
International Journal of Fracture
15
,
217
230
(
1979
).
10.
K.
Hu
,
J.
Fu
and
Z.
Yang
,
Theoretical and Applied Fracture Mechanics
74
,
157
163
(
2014
).
11.
D. S.
Dugdale
,
Journal of the Mechanics and Physics of Solids
8
,
100
104
(
1960
).
12.
H.
Ferdjani
and
J. J.
Marigo
,
European Journal of Mechanics-A/Solids
53
,
1
9
(
2015
).
13.
K. L.
Nielsen
, and
J. W.
Hutchinson
,
International Journal of Impact Engineering
, (
2017
).
14.
X. Y.
Li
,
D.
Yang
,
W. Q.
Chen
, and
G. Z.
Kang
,
International journal of fracture
,
1
8
(
2012
).
15.
X.
,
Jin
,
S.
Chaiyat
,
L. M.
Keer
, and
K.
Kiattikomol
,
Journal of the Mechanics and Physics of Solids
56
,
1127
1146
(
2008
).
16.
H. J.
Hoh
,
Z. M.
Xiao
and
J.
Luo
,
Actamechanica
210
,
305
314
(
2010
).
17.
D.
Camas
,
P.
Lopez-Crespo
,
A.
Gonzalez-Herrera
and
B.
Moreno
,
Engineering Fracture Mechanics
(
2017
).
18.
R.
Branco
,
D. M.
Rodrigues
, and
F. V.
Antunes
,
Fatigue & Fracture of Engineering Materials & Structures
31
,
209
220
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.