The Szegӧ kernel plays an important role in conformal mapping and satisfies a boundary Kerzman-Stein integral equation. The series representation for the Szegӧ kernel for an annulus region is well known. In this paper, the Adomian decomposition method is applied to solve the boundary Kerzman-Stein integral equation. The method provides another series form for the Szegӧ kernel for the annulus region. The two series are shown to be equivalent. Some numerical examples are also presented to compare the speed of convergence of the two series.
REFERENCES
1.
T. J.
Tegtmeyer
and A. D.
Thomas
, Rocky Mountain Journal of Mathematics
, 29
, 709
–723
(1999
).2.
S.
Bell
, Journal of Mathematical Analysis and Applications
, 120
, 211
–217
(1986
).3.
N.
Kerzman
and E. M.
Stein
, Mathematische Annalen
, 236
, 85
–93
(1978
).4.
N.
Kerzman
and M. R.
Trummer
, Journal of Computational and Applied Mathematics
, 14
, 111
–123
(1986
).5.
A. M.
Wazwaz
, A First Course in Integral Equations
. (World Scientific
, New Jersey
, 1997
).6.
W.
Derrick
, Introductory Complex Analysis and Applications
. (Academic Press
, New York
, 1972
).7.
K. E.
Atkinson
, The Numerical Solution of Integral Equations of the Second Kind
. (Cambridge University Press
, 1997
).8.
P. J.
Davis
and P.
Rabinowitz
, Methods of Numerical Integration
, 2nd Edition. (Academic Press
, Orlando
, 1984
).9.
K.
Nazar
, A. H.
Murid
, and A. W.
Sangawi
, “The computation of zeros of Ahlfors map for multiply connected regions
,” AIP Conference Proceedings
1795
, (American Institute of Physics
, Melville, NY
, 2017
), pp. 020003
.
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.