In this paper, we construct a non-Volterra Gaussian Quadratic Stochastic Operators defined on the set of real numbers R and show non-ergodicity of this transformation.
Topics
Stochastic processes
REFERENCES
1.
N. N.
Ganikhodjaev
and N. Z. A.
Hamzah
, AIP Conference Proceedings
1682
, 040009 (2015
).2.
N. N.
Ganikhodjaev
and N. Z. A.
Hamzah
, Journal of Physics: Conf. Series
819
, 012007 (2017
).3.
4.
R. N.
Ganikhodzhaev
, Acad. Sci. Sb. Math.
76
, 489
–506
(1993
).5.
R. N.
Ganikhodzhaev
, Math. Notes
56
, 1125
–1131
(1994
).6.
Yu. I.
Lyubich
, Russian Math. Surveys
26
, 51
–116
(1978
).7.
R. N.
Ganikhodzhaev
, F. M.
Mukhamedov
, U. A.
Rozikov
, Infinite Dimensional Analysis, Quantum Probability and Related Topics
14
, 279335 (2011
).8.
R.D.
Jenks
, Journal of Differential Equations
5
, 497
–514
(1969
).9.
H.
Kesten
, Advance. Appl. Prob.
2
, 179
–229
(1970
).10.
11.
E.
Akin
, and V.
Losert
, Jour. Math. Biology
20
, 231
–258
(1984
).12.
J.
Hofbauer
and K.
Sigmund
, Evolutionary Games and Population Dynamic
, UK
: Cambridge University Press
, 1998
.13.
T.
Nagylaki
, Proc. Natl. Acad. Sci. USA
80
, 5941
–5945
(1983
).14.
T.
Nagylaki
, Proc. Natl. Acad. Sci. USA
80
, 6278
–6281
(1983
).15.
S.
Ulam
, A Collection of Mathematical Problems: Problem in Modern Mathematics
, New York
: Interscience Publishers
, 1960
.16.
M. I.
Zakharevich
, Russian Math. Surveys
33
, 265
–266
(1978
).17.
N. N.
Ganikhodzhaev
, D.V.
Zanin
, Russian Math. Surveys
59
, 571
–572
(2004
).18.
N. N.
Ganikhodzhaev
, U. U.
Jamilov
, R. T.
Mutkhitdinov
, Journal of Physics: Conf. Series
435
, 012005 (2013
).19.
N. N.
Ganikhodzhaev
, R. N.
Ganikhodzhaev
, U. U.
Jamilov
, Ergodic Theory and Dynamical System
35
, 14431473
(2015
).
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.