In this paper, we investigate the dynamics of the Lebesque quadratic stochastic operator on the set of all Lebesque measures of the set X = [0,1]. We consider the family of functions such that for any fixed x, y a probability measure P(x, y,.) is absolutely continuous with respect to usual Lebesque measure on X with simple Radon-Nikodym derivative. We construct the family of strictly non-Volterra quadratic stochastic and show that their dynamic behavior coincides with dynamic of strictly non-Volterra quadratic stochastic operator on 3-dimensional simplex.
REFERENCES
1.
2.
N.
Ganikhodjaev
, R.
Ganijhodjaev
, U.
Jamilov
, Ergodic Theory and Dynamical Systems
, 35
, 1443
–1473
(2015
).3.
N.
Ganikhodjaev
, D.
Zanin
, Russian Math. Surveys
59
, 571
–572
(2004
).4.
R.
Ganikhodzhaev
, Acad. Sci. Sb. Math
76
, 489
–506
(1993
).5.
R.
Ganikhodzhaev
, Math. Notes
56
, 1125
–1131
(1994
).6.
M.
Zakharevich
, Russian Math. Surveys
33
, 265
–266
1978
).7.
8.
U. A.
Rozikov
, U. U.
Jamilov
, Sbornik: Mathematics
200
, 1339
–1351
(2009
).9.
N. N.
Ganikhodjaev
and S. H.
Jusoo
, On Lebesque nonlinear transformation with family of continuous measures
, AIP Conference Proceedings
1830
, 070012 (2017
).10.
N. N.
Ganikhodjaev
, Z. A.
Hamzah
, The Scientific World Journal
, vol. 2014
, Article ID 832861, 7
pages, 2014
11.
N. N.
Ganikhodjaev
, M.
Saburov
, U.
Jamilov
, Appl. Math. Info. Science
7
, 1721
–1729
(2013
).12.
N. N.
Ganikhodjaev
, M.
Saburov
, A.M.
Nawi
, The Scientific World Journal
, 2014
, (2014
) 1
–11
.13.
R.
Ganikhodzhaev
, F.
Mukhamedov
, U.
Rozikov
, Infinite Dimensional Analysis, Quantum Probability and Related Topics
14
, 279
–335
(2011
).14.
H.
Kesten
, Advance Appl. Prob.
2
, (1970
) 1
–82
15.
Y.
Lyubich
, Mathematical structures in population genetics
(Springer-Verlag
, 1992
).16.
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.