In this note, we propose a new class of orthogonal polynomials (named Bachok-Hasham polynomials of the first and second kind for order k, denote it as Z(i,n)k(x),i={ 1,2 }, which is extension of the Chebyshev polynomials of the first and second kind respectively. It is found that Bachok--Hasham polynomials of first and second kind Z(i,n)k(x) are orthogonal with respect to weights w(1,k)(x)=xk11x2k,w(2,k)(x)=xk11x2k on the interval [-1,1], where k is positive odd integers. Spectral properties Bachok--Hasham polynomials of the first and second kind Z(i,n)k(x),i={ 1,2 } are proved. These properties are used to solve a special class of singular integral equations. Finally, numerical examples and comparison results with other methods are provided to illustrate the effectiveness and accuracy of the proposed method.

1.
D.
Porter
, and
D.S.
Stirling
, (
1990
).
Integral equations: a practical treatment, from spectral theory to applications
(Vol.
5
).
Cambridge University Press
.
2.
H.
Hochstadt
, (
2011
).
Integral equations
(Vol.
91
).
John Wiley and Sons
.
3.
M.
Nosrati Sahlan
,
H.R.
Marasi
and
F.
Ghahramani
,
Cogent Mathematics
,
2
(
1
),
104
111
(
2015
).
4.
A.
Jafarian
and
Z.
Esmailzadeh
,
Journal of Mathematical Modeling
,
1
,
76
84
(
2013
).
5.
T.
Aboiyar
,
D.A.
Kuhe
and
M.C.
Soomiyol
,
African Journal of Mathematics and Computer Science Research
,
3
,
220
224
(
2010
).
6.
K.
Paryab
and
M.
Rostami
,
Mathematical Sciences Quarterly Journal
,
2
,
335
346
(
2008
).
7.
C.
Laurita
,
Journal of computational and applied mathematics
,
116
,
23
40
(
2000
).
8.
A.F.K.
Bukhari
,
Applied Mathematics and Computation
,
213
,
39
46
(
2009
).
9.
R.
Kress
and
K.M.
Lee
.
Journal of Computational and Applied Mathematics
,
161
,
161
177
(
2003
).
10.
G.E.
Okecha
,
International Journal of Mathematics and Mathematical Sciences
, (
2007
).
11.
M.A.F
Araghi
and
S.
Noeiaghdam
,
Journal of Interpolation and Approximation in Scientific Computing
,
1
13
(
2016
).
12.
S.H.
Kim
,
Journal of Inequalities and Applications
,
1
10
(
2012
).
13.
S.M.
Dardery
and
M.M.
Allan
,
Chebyshev polynomials for solving a class of singular integral equations
.
Applied Mathematics
,
5
,
753
(
2014
)..
14.
R.P.
Srivastav
F.
Zhang
,
Computers and Mathematics with Applications
,
21
,
59
71
(
1991
).
15.
A.
Chakrabarti
and
S.C.
Martha
,
Mathematical Sciences
,
6
,
1
29
(
2012
).
16.
M.
Sen
and
J.M.
Powers
(
2001
),
Lecture Notes on Mathematical Methods
.
17.
A.
Mennouni
,
International Journal of Difference Equations
,
8
,
71
76
(
2013
).
18.
B.
Bialecki
and
F.
Stenger
,
Mathematics of Computation
,
51
,
133
165
(
1988
).
19.
Y.
Eidelman
,
V.D.
Milman
and
A.
Tsolomitis
, (
2004
).
Functional analysis: an introduction
(Vol.
66
).
American Mathematical Soc
.
20.
J.C.
Mason
and
D.C.
Handscomb
(
2002
).
Chebyshev polynomials
.
CRC Press
.
21.
S.M.
Dardery
and
M.M.
Allan
,
Applied Mathematics
,
5
,
753
(
2014
).
22.
D.
Berthold
,
W.
Hoppe
and
B.J.
Silbermann
,
Integral Equations Appl
,
4
,
309
336
(
1992
).
23.
Z.K.
Eshkuvatov
,
N.N.
Long
and
M.
Abdulkawi
,
Applied Mathematics Letters
,
22
,
651
657
(
2009
).
24.
A.
Dezhbord
,
T.
Lotfi
and
K.
Mahdiani
,
Journal of Computational and Applied Mathematics
,
296
,
156
169
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.