The model of atmospheric fragmentation of large meteoroids to the cloud of fragments is proposed. The comparison with similar models used in the literature is made. The approximate analytical solution of meteor physics equations is obtained for the mass loss of the disrupted meteoroid, the energy deposition and for the light curve normalized to the maximum brightness. This solution is applied to modelling of interaction of the Chelyabinsk meteoroid with the atmosphere. The influence of uncertainty of initial parameters of the meteoroid on characteristics of its interaction with the atmosphere is estimated. Comparison of the analytical solution with the observational data is made.

1.
E. J.
Öpik
,
Physics of Meteor Flight in the Atmosphere
(
Interscience Publishers Inc.
,
NY
,
1958
), pp.
68
71
, 83–86.
2.
S. S.
Grigoryan
,
Cosmic Research
,
17
,
724
740
(
1979
).
3.
H. J.
Melosh
,
Lunar Planet. Sci.
,
12A
,
29
35
(
1981
).
4.
K. J.
Zahnle
,
J. Geophys. Res.
,
97
,
E6, 10
,
243
10
,
255
(
1992
).
5.
J. G.
Hills
and
M. P.
Goda
,
Astronomical J.
,
105
,
1114
1144
(
1993
).
6.
V. V.
Svetsov
,
I. V.
Nemtchinov
, and
A. V.
Teterev
,
Icarus
,
116
,
131
153
(
1995
).
7.
S. S.
Grigoryan
,
F. S.
Ibodov
, and
S. I.
Ibadov
,
Sol. Syst. Res.
,
47
, No.
4
,
275
279
(
2013
).
8.
P. J.
Register
,
D. L.
Mathias
, and
L. F.
Wheeler
,
Icarus
,
284
,
157
166
(
2017
).
9.
O.
Popova
, “
Passage of bolides through the atmosphere
”, in
Meteoroids: The Smallest Solar System Bodies
,
Proceedings of the Meteoroids 2010 Conference (NASA/CP-2011-216469
,
2011
), pp.
232
242
.
10.
O. P.
Popova
,
P.
Jenniskens
and
D. O.
Glazachev
, “Fragmentation of the Chelyabinsk meteoroid”, in
Dynamic processes in geospheres, Issure
5
(
GEOS
,
Moscow
,
2014
), pp.
59
78
(in Russian).
11.
L. F.
Wheeler
,
P. J.
Register
, and
D. L.
Mathias
,
Icarus
,
295
,
149
169
(
2017
).
12.
V. A.
Bronshten
,
Physics of Meteoric Phenomena
(
Nauka
,
Moscow
,
1981
), pp.
25
26
(in Russian).
13.
Q. R.
Passay
and
H. J.
Melosh
,
Icarus
,
116
,
131
153
(
1995
).
14.
N.
Artemieva
and
V.
Shuvalov
,
J. Geophys. Res., Planets
,
106
,
E2
,
3297
3309
(
2001
).
15.
J. T.
Suttles
,
E. M.
Sullivan
, and
S. B.
Margolis
, “
Curve fits of predicted inviscid stagnation-point radiative heating rates, cooling factors, and shock standoff distances for hyperbolic Earth entry
”,
NASA TN D-7622
(
1974
).
16.
D. O.
ReVelle
, “Dynamics and thermodynamics of large meteor entry: a quasi-simple ablation model”,
Planetary Sciences SR-76-1
(
Herzberg Institute of Astrophysics, National Research Council Canada
,
Ottawa
,
1976
).
17.
L. M.
Biberman
,
S. Ya.
Bronin
,
M. V.
Brykin
, and
A. Kh.
Mnatsakanyan
,
Fluid Dynamics
,
13
,
440
447
(
1978
).
18.
L. M.
Biberman
,
S. Ya.
Bronin
, and
M. V.
Brykin
,
Thermophysics of High Temperature
,
17
, No.
1
,
84
90
(
1979
) (in Russian).
19.
M. V.
Brykin
, “
Aerodynamic heating of blunt bodies in motion through the Earth atmosphere under the strong radiation-convective interaction and ablation
”, Ph.D. thesis,
Institute for High Temperatures of the Russian Academy of Sciences
,
1979
(in Russian).
20.
É. Z.
Apshtein
,
N. V.
Vartanyan
, and
V. I.
Sakharov
,
Fluid Dynamics
,
21
,
78
83
(
1986
).
21.
Z.
Ceplecha
,
J.
Borovička
,
W. G.
Elford
 et al.,
Space Sci. Rev.
,
84
,
327
471
(
1998
).
22.
J.
Borovicka
,
P.
Spurny
,
P.
Brown
 et al.,
Nature
,
503
,
235
237
(
2013
).
23.
P. G.
Brown
,
J. D.
Assink
,
L.
Astiz
 et al.,
Nature
,
503
,
238
241
(
2013
).
24.
O. P.
Popova
,
P.
Jenniskens
,
V.
Emel’yanenko
 et al.,
Science
,
342
,
1069
1073
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.