The model of atmospheric fragmentation of large meteoroids to the cloud of fragments is proposed. The comparison with similar models used in the literature is made. The approximate analytical solution of meteor physics equations is obtained for the mass loss of the disrupted meteoroid, the energy deposition and for the light curve normalized to the maximum brightness. This solution is applied to modelling of interaction of the Chelyabinsk meteoroid with the atmosphere. The influence of uncertainty of initial parameters of the meteoroid on characteristics of its interaction with the atmosphere is estimated. Comparison of the analytical solution with the observational data is made.
REFERENCES
1.
E. J.
Öpik
, Physics of Meteor Flight in the Atmosphere
(Interscience Publishers Inc.
, NY
, 1958
), pp. 68
–71
, 83–86.2.
3.
4.
K. J.
Zahnle
, J. Geophys. Res.
, 97
, E6, 10
, 243
–10
, 255
(1992
).5.
J. G.
Hills
and M. P.
Goda
, Astronomical J.
, 105
, 1114
–1144
(1993
).6.
V. V.
Svetsov
, I. V.
Nemtchinov
, and A. V.
Teterev
, Icarus
, 116
, 131
–153
(1995
).7.
S. S.
Grigoryan
, F. S.
Ibodov
, and S. I.
Ibadov
, Sol. Syst. Res.
, 47
, No. 4
, 275
–279
(2013
).8.
P. J.
Register
, D. L.
Mathias
, and L. F.
Wheeler
, Icarus
, 284
, 157
–166
(2017
).9.
O.
Popova
, “Passage of bolides through the atmosphere
”, in Meteoroids: The Smallest Solar System Bodies
, Proceedings of the Meteoroids 2010 Conference (NASA/CP-2011-216469
, 2011
), pp. 232
–242
.10.
O. P.
Popova
, P.
Jenniskens
and D. O.
Glazachev
, “Fragmentation of the Chelyabinsk meteoroid”, in Dynamic processes in geospheres, Issure
5
(GEOS
, Moscow
, 2014
), pp. 59
–78
(in Russian).11.
L. F.
Wheeler
, P. J.
Register
, and D. L.
Mathias
, Icarus
, 295
, 149
–169
(2017
).12.
V. A.
Bronshten
, Physics of Meteoric Phenomena
(Nauka
, Moscow
, 1981
), pp. 25
–26
(in Russian).13.
Q. R.
Passay
and H. J.
Melosh
, Icarus
, 116
, 131
–153
(1995
).14.
N.
Artemieva
and V.
Shuvalov
, J. Geophys. Res., Planets
, 106
, E2
, 3297
–3309
(2001
).15.
J. T.
Suttles
, E. M.
Sullivan
, and S. B.
Margolis
, “Curve fits of predicted inviscid stagnation-point radiative heating rates, cooling factors, and shock standoff distances for hyperbolic Earth entry
”, NASA TN D-7622
(1974
).16.
D. O.
ReVelle
, “Dynamics and thermodynamics of large meteor entry: a quasi-simple ablation model”, Planetary Sciences SR-76-1
(Herzberg Institute of Astrophysics, National Research Council Canada
, Ottawa
, 1976
).17.
L. M.
Biberman
, S. Ya.
Bronin
, M. V.
Brykin
, and A. Kh.
Mnatsakanyan
, Fluid Dynamics
, 13
, 440
–447
(1978
).18.
L. M.
Biberman
, S. Ya.
Bronin
, and M. V.
Brykin
, Thermophysics of High Temperature
, 17
, No. 1
, 84
–90
(1979
) (in Russian).19.
M. V.
Brykin
, “Aerodynamic heating of blunt bodies in motion through the Earth atmosphere under the strong radiation-convective interaction and ablation
”, Ph.D. thesis, Institute for High Temperatures of the Russian Academy of Sciences
, 1979
(in Russian).20.
É. Z.
Apshtein
, N. V.
Vartanyan
, and V. I.
Sakharov
, Fluid Dynamics
, 21
, 78
–83
(1986
).21.
Z.
Ceplecha
, J.
Borovička
, W. G.
Elford
et al., Space Sci. Rev.
, 84
, 327
–471
(1998
).22.
J.
Borovicka
, P.
Spurny
, P.
Brown
et al., Nature
, 503
, 235
–237
(2013
).23.
P. G.
Brown
, J. D.
Assink
, L.
Astiz
et al., Nature
, 503
, 238
–241
(2013
).24.
O. P.
Popova
, P.
Jenniskens
, V.
Emel’yanenko
et al., Science
, 342
, 1069
–1073
(2013
).
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.