To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

1.
P.
Refregier
,
B.
Javidi
, “
Optical image encryption based on input plane and Fourier plane random encoding
”,
Opt. Lett.
20
,
767
769
, (
1995
).
2.
G.
Unnikrishnan
,
J.
Joseph
,
K.
Singh
, “
Optical encryption by double random phase encoding in the fractional Fourier domain
”,
Opt. Lett.
25
,
887
889
, (
2000
).
3.
N.K
Nishchal
,
J.
Joseph
,
K.
Singh
, “
Fully phase encryption using fractional Fourier transform
”,
Opt. Eng.
42
,
1583
1588
, (
2003
).
4.
R.
Tao
,
Y.
Xin
,
Y.
Wang
, “
Double image encryption based on random phase encoding in the fractional Fourier domain
”,
Optics Express
,
15
(
24
),
16067
16079
, (
2007
).
5.
O.
Matoba
,
B.
Javidi
, “
Encrypted optical memory system using three-dimensional keys in the Fresnel Domain
”,
Opt. Lett.
24
,
762
764
, (
1999
).
6.
G.
Situ
,
Zhang
, “
Double random-phase encoding in the Fresnel domain
”,
Opt. Lett.
29
,
1584
86
, (
2004
).
7.
W.
Chen
,
X.
Chen
, “
Optical color image encryption based on asymmetric cryptosystem in the Fresnel domain
”,
Opt. Comm.
284
,
3913
3917
, (
2011
).
8.
H.
Singh
,
A. K.
Yadav
,
S.
Vashisth
,
K.
Singh
, “
Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain
”,
International J. of Opt.
,
926135
:
1
13
, (
2015
).
9.
J.A.
Rodrigo
,
T.
Alieva
,
M.L.
Calvo
, “
Gyrator Transform: properties and applications
”,
Optics Express
,
15
,
2190
2203
, (
2007
).
10.
H.
Singh
,
A.K.
Yadav
,
S.
Vashisth
,
K.
Singh
, “
Fully-phase image encryption using double random – structured phase masks in gyrator domain
”,
Appl Opt.
53
, pp.
72
81
, (
2014
).
11.
W.
Qin
,
X.
Peng
, “
Asymmetric cryptosystem based on phase truncated Fourier transforms
”,
Opt. Lett.
35
,
786
789
, (
2010
).
12.
J. F.
Barrera
,
R.
Henao
,
R.
Torroba
, “
Fault tolerances using toroidal zone plate ecryption
”,
Opt. Comm.
,
256
,
489
494
, (
2000
).
13.
J. A.
Davis
,
D. E.
McNamara
,
D. M.
Cottrell
, “
Image Processing with the radial Hilbert transform:theory and experiments
”,
Opt. Lett.
25
,
0146
9592
, (
2000
).
14.
H.
Singh
,
A.K.
Yadav
,
S.
Vashisth
,
K.
Singh
, “
Double phase-image encryption using Gyrator transforms and structured phase mask in the frequency plane
”,
Optics and Lasers in Engineering
,
67
,
145
156
, (
2015
).
15.
H.
Singh
, “
Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain
”,
3 D Res
,
7
(
34
),
1
18
, (
2016
).
This content is only available via PDF.
You do not currently have access to this content.