This paper proposes a Quick Locale based Convolutional System strategy (Quick R-CNN) for question recognition. Quick R-CNN expands on past work to effectively characterize ob-ject recommendations utilizing profound convolutional systems. Com-pared to past work, Quick R-CNN utilizes a few in-novations to enhance preparing and testing speed while likewise expanding identification precision. Quick R-CNN trains the profound VGG16 arrange 9 quicker than R-CNN, is 213 speedier at test-time, and accomplishes a higher Guide on PASCAL VOC 2012. Contrasted with SPPnet, Quick R-CNN trains VGG16 3 quicker, tests 10 speedier, and is more exact. Quick R-CNN is actualized in Python and C++ (utilizing Caffe) and is accessible under the open-source MIT Permit.

1.
J.
Carreira
,
R.
Caseiro
,
J.
Batista
, and
C.
Sminchisescu
.
Se-mantic segmentation with second-order pooling
. In
ECCV
,
2012
.
2.
D.
Erhan
,
C.
Szegedy
,
A.
Toshev
, and
D.
Anguelov
.
Scalable object detection using deep neural networks
. In
CVPR
,
2014
.
3.
P.
Felzenszwalb
,
R.
Girshick
,
D.
McAllester
, and
D.
Ra-manan
.
Object detection with discriminatively trained part based models
.
TPAMI
,
2010
.
4.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
.
Spatial pyramid pooling in deep convolutional networks for visual recognition
. In
ECCV
,
2014
.
5.
S.
Lazebnik
,
C.
Schmid
, and
J.
Ponce
.
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
. In
CVPR
,
2006
.
6.
M.
Lin
,
Q.
Chen
, and
S.
Yan
.
Network in network
. In
ICLR
,
2014
.
7.
T.
Lin
,
M.
Maire
,
S.
Belongie
,
L.
Bourdev
,
R.
Girshick
.
8.
Hays
,
P. Perona
,
D.
Ramanan
,
P.
Dollar
,´ and
C. L.
Zit-nick
.
Microsoft COCO: common objects in context
. arXiv e-prints, arXiv:1405.0312 [cs.CV],
2014
9.
K.
Simonyan
and
A.
Zisserman
.
Very deep convolutional networks for large-scale image recognition
. In
ICLR
,
2015
.
10.
P.
Viola
and
M.
Jones
.
Rapid object detection using a boosted cascade of simple features
. In
CVPR
,
2001
.
This content is only available via PDF.
You do not currently have access to this content.