While human population has been multiplied by four in the last hundred years, the world energy consumption was multiplied by ten. The common method of using fossil fuels to provide energy and electricity has dangerously disturbed nature’s and climate’s balance. It has become urgent and crucial to find sustainable and eco-friendly alternatives to preserve a livable environment with unpolluted air and water. Renewable energy is the unique eco-friendly opportunity known today. The main challenge of using renewable energy is to ensure the constant balance of electricity demand and generation on the electrical grid. This paper investigates whether the solar electricity generation is correlated with the urban electricity consumption in hot climates. The solar generation and total consumption have been compared for three cities in Florida. The hourly solar generation has been found to be highly correlated with the consumption that occurs 6 h later, while the monthly solar generation is correlated with the monthly energy consumption. Producing 30% of the electricity using solar energy has been found to compensate partly for the monthly variation in the urban electricity demand. In addition, if 30% of the world electricity is produced using solar, global CO2 emissions would be reduced by 11.7% (14.6% for India). Thus, generating 30% solar electricity represents a valuable asset for urban areas situated in hot climates, reducing the need for electrical operating reserve, providing local supply with minimal transmission losses, but above all reducing the need for fossil fuel electricity and reducing global CO2 emission.

1.
The world counts
,
Environmental facts and live statistics
: http://www.theworldcounts.com (accessed on 15.09.2017)
2.
G. R.
Walther
,
E.
Post
,
P.
Convey
,
A.
Menzel
,
C.
Parmesan
,
T. J. C.
Beebee
,
J. M.
Fromentin
,
O.
Hoegh-Guldberg
, and
F.
Bairlein
,
Nature
,
416
,
389
395
(
2002
).
3.
A.
Thakur
,
Oriental journal of chemistry
,
33
(
2
),
1051
1056
(
2017
)
4.
Medjahed
,
B.
,
Naili
,
S.
,
Bouzit
,
M.
,
Journal of Material and Environmental Science
,
8
(
1
),
144
153
(
2017
).
5.
H.S.A.
Yahya
,
A.F.
Taybi
,
Y.
Mabrouki
,
A.
Fahsi
,
A.
Chafi
, and
Z.
Chafik
,
Journal of Materials and Environmental Science
,
8
(
9
),
3372
3381
(
2017
).
6.
M.
Santamouris
,
Energy and Buildings
,
82
,
100
113
(
2014
).
7.
F.
Salamanca
,
M.
Georgescu
,
A.
Mahalov
,
M.
Moustaoui
,
M.
Wang
and
B. M.
Svoma
,
Environmental research letters
,
8
,
IOP Publishing
,
034022
(UK,
2013
).
8.
Y.
Sun
and
G.
Augenbroe
,
Energy and Buildings
,
77
,
171
179
(
2014
).
9.
A.
Aflaki
,
M.
Mirnezhad
,
A.
Ghaffarianhoseini
,
A.
Ghaffarianhoseini
,
H.
Omrany
,
Z. H.
Wang
, and
H.
Akbari
.
Cities
62
,
131
145
(
2017
).
10.
E.W.
Bodnaruk
,
C.N.
Kroll
,
Y.
Yang
,
S.
Hirabayashi
,
D.J.
Nowak
, and
T.A.
Endreny
,
Landscape and Urban Planning
,
157
,
457
467
(
2017
).
11.
T. V. K.
Sushil Kumar
,
J.
Chandrasekar
,
S. K.
Moorthy
,
A.
Sakthikala
,
S. R. Arvind
Bharath
,
Indian Journal of Science and Technology
9
(
4
)
1
4
(
2016
).
12.
Bonafide
Research
,
India Air Cooler Market Outlook 2021
, ID: 3345008 (
2015
).
13.
S.
Nath
. “Economic Models, Growth and Sustainable Development,” in
Youth Conference on Small Island Developing States and Climate Change
,
Indian Ocean Commission/European Union in Mauritius
(
2015
).
14.
P. R.
Epstein
,
J. J.
Buonocore
,
K.
Eckerle
,
M.
Hendryx
,
B.M.
Stout
 III
,
R.
Heinberg
,
R.W.
Clapp
,
B.
May
,
N. L.
Reinhart
,
M. M.
Ahern
,
S. K.
Doshi
, and
L.
Glustrom
,
Annals of the New York academy of sciences
,
1219
,
73
98
(
2011
).
15.
G. S.
Sisodia
,
I.
Soares
,
P.
Ferreira
,
S.
Banerji
,
D.
Van Den Poel
, and
M.
Kumar
,
Inter. Conf. on Alternative Energy in Dev. Countries and Emerging Economies
,
Energy Procedia
79
,
506
512
(
2015
).
16.
Australian Energy Market Commission
,
Electricity Price Trends report released
, (
2013
). http://www.aemc.gov.au ((accessed 15.09.2017)
17.
F. C.
Robert
and
S.
Gopalan
,
Journal of renewable and sustainable energy
, (
2017
) [under review]
18.
Y. L.
Hou
,
H. Z.
Mu
,
G. T.
Dong
,
J.
Shi
,
Advances in climate change research
5
(
2
),
74
80
(
2014
).
19.
S.
Horowitz
,
B.
Mauch
, and
F.
Sowell
,
Applied Energy
,
132
,
47
55
(
2014
).
20.
F. C.
Robert
,
G. S.
Sisodia
, and
S.
Gopalan
,
Sixth Inter. Conf. on Computation of Power, Energy, Information and Communication
, (
2017
). [in press]
21.
DOE/NREL/MRI data, download from: https://www.eia.gov/beta/realtime_grid (accessed 15.09.17)
22.
NREL data, downloaded from: https://maps.nrel.gov/nsrdb-viewer/ (accessed 15.09.17)
23.
F. A.
Farret
. and
M. G.
Simoes
, “
Integration of Alternative Sources of Energy,” Wiley-IEEE Press
, (
2005
) ISBN: 978-0-471-71232-9 (Chap 15 available online: http://homerenergy.com/documents/MicropowerSystemModelingWithHOMER.pdf)
24.
T.
Yates
, and
B.
Hibberd
.,
Solar Pro magazine
,
3.3
,
30
56
(
2010
).
25.
NREL data, downloaded from: https://openei.org/datasets/dataset?tags=NREL (accessed 15.09.17)
26.
A.
Khyad
,
H.
Samrani
,
M.N.
Bargach
,
Journal of Materials and Environ. Sci.
,
7
(
4
),
1184
1192
(
2016
).
27.
Intergovernmental Panel on Climate Change (IPCC)
, “Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment.” edited by
O.
Edenhofer
, et al
,
Cambridge University Press
,
Cambridge, United Kingdom and New York, NY, USA
(
2014
).
28.
J. G.J.
Olivier
,
G.
Janssens-Maenhout
,
M.
Muntean
and
J. A.H.W.
Peters
,
Trends in global CO2 emissions: 2016 Report
,
PBL Netherlands Environmental Assessment Agency
,
The Hague
,
2315
(
2016
).
29.
D.
Nugent
,
B. K.
Sovacool
,
Energy Policy
,
65
,
229
244
(
2014
).
30.
D.
Chung
,
C.
Davidson
,
R.
Fu
,
K.
Ardani
, and
R.
Margolis
,
NREL, Report NREL/TP-6A20-64746
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.