The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their “height : radius” ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6·10−2 m3 with change central hole diameter of the ribs. It has been shown that the growth of “height / radius” ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6·10−2 m3 having central hole diameter of horizontal ribs 6.4·10−2 m.

1.
A. A.
Orlov
,
A. F.
Tsimbalyuk
, and
R. V.
Malyugin
,
Sep. Purif. Rev.
46
(
1
),
81
89
(
2017
).
2.
C. E.
Edwards
and
A.J.
Oliever
,
JOM-J Min. Met. Mat. S.
52
,
12
20
(
2000
).
3.
A. V.
Vilnina
,
V.F.
Diadik
,
S. A.
Bajdali
, and
S.N.
Livencov
,
Bull. Tomsk Polytech. Univ.
315
,
91
93
(
2009
).
4.
B.
Morel
and
B.
Duperret
,
J. Fluor. Chem.
130
,
7
10
(
2009
).
5.
B.
Belozerov
,
I.
Rusakov
,
G.
Andreev
,
A.
Zhiganov
, and
Yu.
Kobzar
,
Non-ferrous Metals
1
,
58
61
(
2012
).
6.
V. A.
Naletov
,
V. S.
Gordeev
,
M. B.
Glebov
, and
A. Yu.
Naletov
,
Theor. Found. Chem. Eng.
48
,
30
36
(
2014
).
7.
V. K.
Ezhov
,
Atom. Energy
114
,
177
182
(
2013
).
8.
A. M.
Belyntsev
,
G. S.
Sergeev
,
O. B.
Gromov
,
A. A.
Bychkov
,
A. V.
Ivanov
,
S. I.
Kamordin
,
P. I.
Mikheev
,
V. I.
Nikonov
,
I. V.
Petrov
,
V.A.
Seredenko
,
S. P.
Starovoitov
,
S. A.
Fomin
,
V. G.
Frolov
, and
V. F.
Kholin
,
Theor. Found. Chem. Eng.
47
,
499
504
(
2013
).
9.
V. K.
Ezhov
,
Atom. Energy
103
,
890
894
(
2007
).
10.
J.
Zhang
,
J. Radioanal. Nucl. Chem.
299
,
517
522
(
2014
).
11.
V.
Raev
,
A.
Saprugin
,
A.
Cedilkin
, and
V.
Novokshenov
,
Basic Prob. Mater. Sci.
8
,
125
130
(
2011
).
12.
A. V.
Vilnina
and
S. N.
Livencov
,
Bull. Tomsk Polytech. Univ.
312
,
133
136
(
2008
).
13.
P. A.
Smolkin
,
A. S.
Buynovskiy
,
V. V.
Lazarchuk
,
A. A.
Matveev
, and
V. L.
Sofronov
,
Bull. Tomsk Polytech. Univ.
310
,
69
71
(
2007
).
14.
P. A.
Smolkin
,
A. S.
Buynovskiy
,
V. V.
Lazarchuk
,
A. A.
Matveev
,
V.L.
Sofronov
, and
V. L.
Brendakov
,
Bull. Tomsk Polytech. Univ.
310
,
72
77
(
2007
).
15.
A. A.
Orlov
,
A. F.
Tsimbalyuk
,
R. V.
Malyugin
, and
A. A.
Glazunov
,
MATEC Web Conf.
72
,
01079
(
2016
).
16.
A. A.
Orlov
,
A. F.
Tsimbalyuk
, and
R. V.
Malyugin
,
Key Eng. Mater.
683
,
533
539
(
2016
).
17.
D. Y.
Byun
,
S. W.
Baek
, and
M. Y.
Kim
,
Numer. Heat Transfer Part A
43
,
807
825
(
2003
).
18.
J. C.
Chai
and
J. P.
Moder
,
Numer. Heat Transfer B-Fund.
31
,
277
293
(
1997
).
19.
J. I.
Consalvi
,
B.
Porterie
, and
J. C.
Loraund
,
Numer. Heat Transfer B-Fund.
47
,
419
441
(
2005
).
20.
S. V.
Patankar
,
Numerical Heat Transfer and Fuid Flow
(
Hemisphere
,
Washington D.C.
,
1980
)
21.
Z.
Li
,
M.
Yang
and
Yu.
Zhang
,
Int. J. Multiscale Com.
12
(
3
),
177
192
(
2014
).
22.
M.-H.
Hu
,
J.-S.
Wu
, and
Y.-S.
Chen
,
Comput. Fluids
45
(
1
),
241
248
(
2011
).
23.
S. H.
Meraji
,
A.
Ghaheri
, and
P.
Malekzadeh
,
Int. J. Numer. Meth. F.
71
(
4
),
422
445
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.