The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.

1.
A.
Gleizes
,
H.
Kafrouni
,
H.
Duc
, and
C.
Maury
,
J. Phys. D.
15
,
1031
1045
(
1982
).
2.
N. J.
Turro
,
I. Y.-C.
Chen
,
E.
Sartori
,
M.
Ruzzi
,
A.
Marti
,
R.
Lawler
,
S.
Jockusch
,
I.
Lopez-Gejo
,
K.
Komatsu
, and
Y.
Murata
,
Acc. Chem. Res.
43
,
335
345
(
2010
).
3.
E. I.
Karpenko
,
V. E.
Messerle
,
B. G.
Trusov
,
S. S.
Tyutebaev
, and
A. B.
Ustimenko
,
Combustion and Plasmochemistry (Gorenie i Plazmokhimiya – in Russian)
1
,
291
310
(
2003
).
4.
Ya. B.
Zel’dovich
,
A. L.
Buchachenko
, and
E. L.
Frankevich
,
Advances in Physical Sci. (Uspekhi Fiziki – in Russian)
31
,
385
408
(
1988
).
5.
N. J.
Turro
,
M. B.
Zimmit
, and
I. R.
Gould
,
J. Phys. Chem.
92
,
433
437
(
1988
).
6.
V. G.
Plekhanov
,
Isotopes in Condensed Matter
(
Springer Verlag
,
New York
,
2013
).
7.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. T.
14
,
722
733
(
2005
).
8.
V. A.
Vlasov
,
Yu. Yu.
Lutsenko
, and
I.A.
Tikhomirov
,
Thermophys. Aeromech.
14
,
123
128
(
2008
).
9.
A. L.
Mosse
,
G. E.
Savchenko
,
V. A.
Vlasov
,
A. G.
Karengin
,
A. A.
Karengin
, and
A. V.
Levashov
,
J. Eng. Phys. Thermophys.
86
,
651
660
(
2013
).
10.
B.
Mancinelli
,
L.
Prevosto
,
J. C.
Chamorro
,
F. O.
Minotti
, and
H.
Kelly
,
Plasma Chem. Plasma Process.
38
,
147
176
(
2018
).
11.
D. N.
Glumov
and
A. M.
Strekalov
,
Petrol. Eng.
1
,
194
209
(
2011
).
12.
O. A.
Ladyzhenskaya
,
Rus. Math. Surveys
,
14
,
75
97
(
1959
).
13.
V. F.
Myshkin
,
M.
Tichy
,
V. A.
Khan
,
E. V.
Bespala
,
V. N.
Lenskii
, and
D. L.
Gamov
,
Rus. Phys. J.
60
,
1099
1108
(
2017
).
14.
V. F.
Myshkin
,
V. A.
Khan
,
M.
Tichy
,
E.V.
Bespala
,
O.A.
Kolosova
, and
T.V.
Kobanova
,
J. Ind. Pollut. Control
,
32
401
405
(
2016
).
15.
S. P.
Kiselev
,
V. P.
Kiselev
, and
V. N.
Zaykovsky
,
J. Appl. Mech. Tech. Phys.
53
,
72
83
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.