Epidemiology modelling provides an understanding of the underlying mechanisms that influence the spread of dengue disease. The most common mathematical models used are the compartment models abbreviated by ASI-SIR, ASEI-SIR and ASEI-SEIR. This paper starts with a discussion of these common models, followed by the derivation of the basic reproduction number (Ro) of each model. The value of Ro in ASI-SIR model is higher than that in ASEI-SIR and ASEI-SEIR models due to the exclusion of exposed adult mosquito in ASI-SIR model. Further, sensitivity analysis on Ro indicates that natural mortality and biting rate of adult mosquito have significant effects on dengue transmission dynamics. Next, an in-house mathematical model named MOSSEIR is developed, based upon the ASEI-SEIR compartment model, in which both mosquito and human populations are considered. The mosquito population is divided into four compartments consisting of aquatic mosquito, susceptible, exposed and infected adult mosquito; while the human population is classified into four compartments comprising susceptible, exposed, infected and recovered human. MOSSEIR is then used to replicate the number of dengue cases in 2010 for Shah Alam, a capital city of Selangor with high incidence of dengue fever. Finally, effectiveness of control strategies, including mosquito breeding sites control, fogging and vaccination, are evaluated for Shah Alam. Simulation results indicate that these three control strategies can significantly reduce dengue transmission, in theory. In reality, the effectiveness of traditional control methods such as elimination of mosquito breeding sites and fogging is below expectation due to non-compliance. Therefore, the adoption of a safe, effective and affordable vaccine remains the best prospect for controlling dengue.

1.
D. H.
Barmak
,
C. O.
Dorso
,
M.
Otero
and
H. G.
Solari
,
Epidemiol. Infect.
142
,
545
561
(
2014
).
2.
M.
Oki
,
T.
Sunahara
,
M.
Hashizume
and
T.
Yamamoto
,
PLoS Negl. Trop. Dis.
5
,
e1367
(
2011
).
3.
M. N.
Burattini
,
M.
Chen
,
A.
Chow
,
F. A. B.
Coutinho
,
K. T.
Goh
,
L. F.
Lopez
,
S.
Ma
and
E.
Massad
,
Epidemiol. Infect.
136
,
309
319
(
2008
).
4.
H. L.
Koh
,
S. Y.
Teh
,
N.M.
Noordin
and
L. H.
Sulaiman
,
Asian J. Pharm. Clin. Res.
,
12
15
(
2017
).
5.
H.
Zhang
,
P.
Georgescu
and
A. S.
Hassan
,
Appl. Math. Comput.
273
,
1059
1089
(
2016
).
6.
G.
Knerer
,
C. S. M.
Currie
and
S. C.
Brailsford
,
Health Care Manag Sci.
18
,
205
217
(
2015
).
7.
S. N. R.
Saleeza
,
Y.
Norma-Rashid
and
M.
Sofian-Azirun
,
Int. J. Biol. Biomol. Agric. Food. Biotechnol. Eng.
5
,
599
603
(
2011
).
8.
J. M.
Heffernan
,
R. J.
Monteiro
and
L. M.
Wahl
,
J. R. Soc. Interface
2
,
281
293
(
2005
).
9.
N.
Chitnis
,
J. M.
Hyman
and
J. M.
Cushing
, B.
Math. Biol.
70
,
1272
1296
(
2008
).
10.
L.
Coudeville
and
G. P.
Garnett
,
PLoS One
7
,
e51244
(
2012
).
11.
T. J.
Hladish
,
C. A. B.
Pearson
,
D. L.
Chao
,
D. P.
Rojas
,
G. L.
Recchia
,
H.
Gómez-Dantés
,
M. E.
Halloran
,
J. R. C.
Pulliam
,
I. M.
Longini
,
PLoS Negl. Trop. Dis.
10
,
e0004661
(
2016
).
12.
D. L.
Chao
,
S. B.
Halstead
,
M. E.
Halloran
and
I. M.
Longini
,
PLoS Negl. Trop. Dis.
6
,
e1876
(
2012
).
13.
H. S.
Rodrigues
,
M. T. T.
Monteiro
and
D. F. M.
Torres
,
Math. Popul. Stud.
20
,
208
223
(
2013
).
14.
H. S.
Rodrigues
,
M. T. T.
Monteiro
,
D. F. M.
Torres
and
A.
Zinober
,
Int. J. Comp. Math.
89
,
334
3463
(
2012
).
15.
S. C.
Chen
and
M. H.
Hsieh
,
Sci. Total Environ.
431
,
385
391
(
2012
).
16.
P. M.
Luz
,
T. N.
Lima-Camara
,
R. V.
Bruno
,
M. G.
Castro
,
M. H. F.
Sorgine
,
R.
Lourenco-de-Oliveira
and
A. A.
Peixoto
,
Mem. Inst. Oswaldo. Cruz.
106
,
755
758
(
2011
).
17.
H. S.
Rodrigues
,
M. T. T.
Monteiro
and
D. F. M.
Torres
,
Math. Biosci.
247
,
1
2
(
2014
).
18.
M.
Chan
and
M. A.
Johansson
,
PLoS One
7
,
e50972
(
2012
).
19.
Ministry of Health Malaysia
.
Health facts 2016
. [Online], [Accessed on 12th August 2016]. Available from: http://pqi.stats.gov.my/result.php?token=3eaa33fb6c88df5f795f852046d006f4
20.
M.
Derouich
,
A.
Boutayeb
, and
E.
Twizell
.
Biomed. Eng. Online.
4
, (
2003
).
21.
A. A.
Shafie
,
H. Y.
Yeo
,
L.
Coudeville
,
L.
Steinberg
,
B. S.
Gill
,
R.
Jahis
and
A.
HSS
,
Pharmacoeconomics
35
,
575
589
(
2017
).
22.
R.
Poli
,
J.
Kennedy
and
T.
Blackwell
,
Swarm. Intell-US.
1
,
33
57
(
2007
).
23.
M.
Faiz
,
C. D.
Nazri
and
S.T.
Chua
,
Trop. Biomed.
34
,
1
9
(
2017
).
24.
World Health Organization
, “Control: Chemical and Biological Methods,” in
Guidelines for Dengue Surveillance and Mosquito Control
(
World Health Organization
,
Geneva
,
1995
), pp.
31
33
.
25.
S. K.
Lam
,
Trop. Med.
35
,
303
307
(
1993
).
26.
W. T.
Hsia
,
H. S.
Wu
,
Y. C.
Yang
and
C.
Lin
,
Taiwan. Epidemiol. Bull.
27
,
39
49
(
2011
).
27.
L.
Eisen
,
B. J.
Beaty
,
A. C.
Morrison
and
T. W.
Scott
,
J. Med. Entomol.
46
,
1245
1255
(
2009
).
28.
S. Q.
Ong
,
Sains. Malays.
45
,
777
785
(
2016
).
29.
S. R.
Hadinegoro
,
J. L.
Arredondo-Garcia
,
M. R.
Capeding
,
C.
Deseda
,
T.
Chotpitayasunondh
,
R.
Dietze
, et al,
N. Engl. J. Med.
372
,
113
123
(
2015
).
30.
L.
Villar
,
G. H.
Dayan
,
J. L.
Arredondo-Garcia
,
D. M.
Rivera
,
R.
Cunha
,
C.
Deseda
, et al,
N. Engl. J. Med.
373
,
1195
1206
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.