When particles are magnetized, a diffusion process is influenced by the ambient magnetic field. While the entropy increases, the constancy of the magnetic moment puts a constraint. Here, we compare the E-cross-B diffusion caused by random fluctuations of the electric field in two different systems, the Penning-Malmberg trap and the magnetic dipole trap. A Fokker-Planck equation is derived by applying the ergodic ansatz on the invariant measure of the system. In the dipole magnetic field particles diffuse inward and accumulate in the higher magnetic field region, while, in a homogeneous magnetic field, particles diffuse out from the confinement region. The properties of analogous transport in a more general class of magnetic fields are also briefly discussed.

1.
M.
Schulz
and
L. J.
Lanzerotti
,
Particle Diffusion in the Radiation Belts
(
Springer
,
New York
,
1974
).
2.
Z.
Yoshida
,
H.
Saitoh
,
J.
Morikawa
,
S.
Watanabe
, and
Y.
Ogawa
,
Phys. Rev. Lett.
104
,
235004
(
2010
).
3.
H.
Saitoh
,
Z.
Yoshida
,
C.
Nakashima
,
H.
Himura
,
J.
Morikawa
, and
M.
Fukao
,
Phys. Rev. Lett.
92
,
25
(
2004
).
4.
Z.
Yoshida
,
H.
Saitoh
,
Y.
Yano
,
H.
Mikami
,
N.
Kasaoka
,
W.
Sakamoto
,
J.
Morikawa
,
M.
Furukawa
, and
S. M.
Mahajan
,
Plasma Phys. Control. Fusion
55
,
014018
(
2013
).
5.
A. C.
Boxer
,
R.
Bergmann
,
J. L.
Ellsworth
,
D. T.
Garnier
,
J.
Kesner
,
M. E.
Mauel
, and
P.
Woskov
,
Nature Phys.
6
, pp.
207
212
(
2010
).
6.
N.
Sato
and
Z.
Yoshida
,
J. Phys. A: Math. Theor.
48
,
205501
(
2015
).
7.
N.
Sato
,
Z.
Yoshida
, and
Y.
Kawazura
,
Plasma Fus. Res.
11
,
2401009
(
2016
).
8.
T. J.
Birmingham
,
T. G.
Northrop
, and
C. G.
Fälthammar
,
Phys. Fluids
10
,
11
(
1967
).
9.
Z.
Yoshida
and
S. M.
Mahajan
,
Prog. Theor. Exp. Phys.
2014
,
073J01
(
2014
).
10.
Z.
Yoshida
,
Adv. Phys. X
1
, pp.
2
19
(
2016
).
11.
N.
Sato
and
Z.
Yoshida
,
Phys. Rev. E
93
,
062140
(
2016
).
12.
N.
Sato
,
N.
Kasaoka
, and
Z.
Yoshida
,
Phys. Plasmas
22
,
042508
(
2015
).
13.
J. H.
Malmberg
and
J. S.
deGrassie
,
Phys. Rev. Lett.
35
,
9
, pp.
577
580
(
1975
).
14.
J. H.
Malmberg
and
C. F.
Driscoll
,
Phys. Rev. Lett.
44
,
10
, pp.
654
657
(
1980
).
15.
D. H. E.
Dubin
and
T. M.
O’Neil
,
Rev. Mod. Phys.
71
,
1
, pp.
87
172
(
1999
).
16.
S. A.
Prasad
and
T. M.
O’Neil
,
Phys. Fluids
22
,
278
(
1979
).
17.
T. S.
Pedersen
and
A. H.
Boozer
,
Phys. Rev. Lett.
88
,
20
(
2002
).
18.
H.
Saitoh
,
J.
Stanja
,
E. V.
Stenson
,
U.
Hergenhahn
,
H.
Niemann
,
T. Sunn
Pedersen
,
M. R.
Stoneking
,
C.
Piochacz
, and
C.
Hugenschmidt
,
New J. Phys.
17
,
103038
(
2015
).
19.
A.
Hasegawa
,
L.
Chen
, and
M. E.
Mauel
,
Nucl. Fusion
30
,
11
(
1990
).
20.
J. W.
Gibbs
,
Elementary Principles in Statistical Mechanics
(
Scribner’s Sons
,
New York
,
1902
), pp.
3
19
.
21.
G. D.
Birkhoff
,
Proc. Nat. Acad. Sci. U.S.A.
17
,
12
, pp.
656
660
(
1931
).
22.
Although non-canonical, equation (3) is Hamiltonian because it can be written in the form ivB = −dφ, where B = dA is the closed magnetic field 2-form with potential 1-form A, and φ serves as Hamiltonian function (remember that here E = −∇φ).
23.
P. J.
Morrison
,
Rev. Mod. Phys.
70
,
2
(
1998
).
24.
T.
Frankel
,
The Geometry of Physics, An Introduction
(
Cambridge University Press
,
Cambridge
, 3rd ed.,
2012
), pp.
165
178
.
25.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
, 2nd ed.,
1985
).
26.
For clarity of exposition in the derivation of the Fokker-Planck equation, we have not discussed the math-ematical issue associated with the definition of the stochastic integral. Here we adopted the Stratonovich integral, which is appropriate for an isolated system where random processes can be though as the limiting representation of a continuous perturbation. See [6, 25] for additional details.
This content is only available via PDF.
You do not currently have access to this content.