In the past decades, biosensors are one of the most interesting topics among researchers and scientist. The biosensors are used in several applications such as determining food quality, control and diagnose clinical problems and metabolic control. Therefore, many efforts have been carried out to design and develop a new generation of these systems. On the other hand nanotechnology by improving the performance of sensors has created an excellent outlook. Using nanomaterials such as nanoparticles, nanotubes, nanowires, and nanorods in diagnostic tools has been significantly increased accuracy, sensitivity and improved detection limits in sensors. In this study, the one-dimensional morphology of the D-phenylalanine was assembled on the surface of the gold electrode. In the next step electrochemical performance of the modified electrode was investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pals Voltammograms (DPV). Finally, by measuring the different concentrations of vitamin B12, the detection limit of the biosensor was obtained 1.6 µM.

1.
Ozin
,
G.A.
,
Hou
,
K.
,
Lotsch
,
B.V.
,
Cademartiri
,
L.
,
Puzzo
,
D.P.
,
Scotognella
,
F.
,
Ghadimi
,
A.
and
Thomson
,
J.
,
2009
.
Nanofabrication by self-assembly
.
Materials Today
,
12
(
5
), pp.
12
23
.
2.
Gatzen
,
H.H.
,
Saile
,
V.
and
Leuthold
,
J.
,
2015
. Nanofabrication by Self-Assembly. In
Micro and Nano Fabrication
(pp.
409
423
).
Springer Berlin Heidelberg
.
3.
Prashar
,
D.
,
2012
.
Self-assembled monolayers-a review
.
Int. J. ChemTech Res
,
4
(
1
), pp.
258
265
.
4.
Whitesides
,
G.
,
Mathias
,
J.
and
Seto
,
C.
,
1991
.
Molecular self-assembly and nanochemistry-A chemical strategy for the synthesis of nanostructures
.
Science
,
254
(
5036
), pp.
1312
1319
.
5.
Görbitz
,
C.H.
,
2006
.
The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide
.
Chemical Communications
, (
22
), pp.
2332
2334
.
6.
Aggeli
,
A.
,
Bell
,
M.
,
Boden
,
N.
and
Keen
,
J.N.
,
1997
.
Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes
.
Nature
,
386
(
6622
), p.
259
.
7.
Hartgerink
,
J.D.
,
Beniash
,
E.
and
Stupp
,
S.I.
,
2001
.
Self-assembly and mineralization of peptide-amphiphile nanofibers
.
Science
,
294
(
5547
), pp.
1684
1688
.
8.
Habibi
,
N.
,
Kamaly
,
N.
,
Memic
,
A.
and
Shafiee
,
H.
,
2016
.
Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery
.
Nano Today
,
11
(
1
), pp.
41
60
.
9.
Hosseinkhani
,
H.
,
Hong
,
P.D.
and
Yu
,
D.S.
,
2013
.
Self-assembled proteins and peptides for regenerative medicine
.
Chemical reviews
,
113
(
7
), pp.
4837
4861
.
10.
Li
,
P.
,
Chen
,
X.
and
Yang
,
W.
,
2013
.
Graphene-induced self-assembly of peptides into macroscopic-scale organized nanowire arrays for electrochemical NADH sensing
.
Langmuir
,
29
(
27
), pp.
8629
8635
.
11.
Wang
,
X.
,
Chen
,
Y.C.
and
Li
,
B.
,
2015
.
Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers
.
RSC advances
,
5
(
11
), pp.
8022
8027
.
12.
Do
,
T.D.
,
Kincannon
,
W.M.
and
Bowers
,
M.T.
,
2015
.
Phenylalanine oligomers and fibrils: the mechanism of assembly and the importance of tetramers and counterions
.
Journal of the American Chemical Society
,
137
(
32
), pp.
10080
10083
.
13.
Ménard-Moyon
,
C.
,
Venkatesh
,
V.
,
Krishna
,
K.V.
,
Bonachera
,
F.
,
Verma
,
S.
and
Bianco
,
A.
,
2015
.
Self-Assembly of Tyrosine into Controlled Supramolecular Nanostructures
.
Chemistry-A European Journal
,
21
(
33
), pp.
11681
11686
.
14.
Singh
,
V.
,
Rai
,
R.K.
,
Arora
,
A.
,
Sinha
,
N.
and
Thakur
,
A.K.
,
2014
.
Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria
.
Scientific reports
,
4
.
15.
Perkins
,
R.J.
,
Kukharchuk
,
A.
,
Delcroix
,
P.
,
Shoemaker
,
R.K.
,
Roeselová
,
M.
,
Cwiklik
,
L.
and
Vaida
,
V.
,
2016
.
The Partitioning of Small Aromatic Molecules to Air–Water and Phospholipid Interfaces Mediated by Non-Hydrophobic Interactions
.
The Journal of Physical Chemistry B
,
120
(
30
), pp.
7408
7422
.
16.
Oh
,
R.
and
Brown
,
D.L.
,
2003
.
Vitamin B12 deficiency
.
American family physician
,
67
(
5
), pp.
979
986
.
17.
Kräutler
,
B.
,
2005
.
Vitamin B12: chemistry and biochemistry.
18.
Li
,
H.B.
and
Chen
,
F.
,
2000
.
Determination of vitamin B 12 in pharmaceutical preparations by a highly sensitive fluorimetric method. Fresenius’
journal of analytical chemistry
,
368
(
8
), pp.
836
838
.
19.
Qin
,
W.
,
Zhang
,
Z.
and
Liu
,
H.
,
1997
.
Chemiluminescence flow sensor for the determination of vitamin B 12
.
Analytica chimica acta
,
357
(
1
), pp.
127
132
.
20.
Karmi
,
O.
,
Zayed
,
A.
,
Baraghethi
,
S.
,
Qadi
,
M.
and
Ghanem
,
R.
,
2011
.
Measurement of vitamin B12 concentration: A review on available methods
.
IIOAB J
,
2
(
2
), pp.
23
32
.
21.
Pala
,
B.B.
,
Vural
,
T.
,
Kuralay
,
F.
,
Çırak
,
T.
,
Bolat
,
G.
,
Abacı
,
S.
and
Denkbaş
,
E.B.
,
2014
.
Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B 12 analysis
.
Applied Surface Science
,
303
, pp.
37
45
.
22.
Wypych
,
G.
,
2001
.
Handbook of solvents
.
ChemTec Publishing
.
23.
Reches
,
M.
and
Gazit
,
E.
,
2004
.
Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides
.
Nano letters
,
4
(
4
), pp.
581
585
.
24.
Hernández
,
S.R.
,
Ribero
,
G.G.
and
Goicoechea
,
H.C.
,
2003
.
Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B 6 and B 12 vitamins in pharmaceutical preparations
.
Talanta
,
61
(
5
), pp.
743
753
.
This content is only available via PDF.
You do not currently have access to this content.