Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.

1.
K.
Gürlebeck
and
D.
Legatiuk
, “On the continuous coupling of finite elements with holomorphic basis functions” in
Hypercomplex Analysis: New perspectives and applications, Trends in Mathematics
, Volume
65
, edited by
S.
Bernstein
,
U.
Khler
,
I.
Sabadini
,
F.
Sommen
(
Birkhäuser
,
Basel
,
2014
), pp.
167
180
.
2.
K.
Gürlebeck
,
U.
Kähler
,
D.
Legatiuk
,
Complex Analysis and Operator Theory
11
(
5
), pp.
1221
1240
(
2016
).
3.
D.
Legatiuk
, ”
Interpolation problem arising in a coupling of finite element method with holomorphic basis functions
,” Ph.D. thesis,
Bauhaus-University Weimar
2015
.
4.
N.
Muskhelishvili
,
Some basic problems of the mathematical theory of elasticity
(
Noordhoff International Publishing
,
Groningen
, second ed.,
1977
).
5.
P.G.
Ciarlet
,
The Finite Element Method for Elliptic Problems
(
North-Holland
,
Amsterdam
,
1978
).
6.
S.
Bernstein
,
Advances in Applied Clifford Algebras
24
,
921
930
(
2014
).
7.
S.
Bock
,
K.
Gürlebeck
,
Mathematical Methods in the Applied Sciences
32
,
223
240
(
2009
).
8.
D.
Weisz-Patrault
,
S.
Bock
,
K.
Gürlebeck
,
International Journal of Solids and Structures
6
,
3422
3430
(
2014
).
9.
I.
Niven
,
Amer. Math. Monthly
48
,
654
661
(
1941
).
10.
I.
Niven
,
Amer. Math. Monthly
57
,
333
345
(
1950
).
11.
V.
Bolotnikov
,
J. Math. Anal. and Appl.
421
,
567
590
(
2015
).
12.
G.
Opfer
,
Hamburger Beiträge zur Angewandten Mathematik, Electronic Transactions on Numerical Analysis
,
44
,
660
670
(
2015
).
13.
A.
Pogorui
and
M.
Shapiro
,
Complex Variables and Elliptic Functions
49
,
379
389
(
2004
).
14.
C.
Cruz
,
M.I.
Falcão
,
H.R.
Malonek
, “
On pseudo-complex bases for monogenic polynomials
” in
9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences: ICNPAA 2012
,
AIP Conference Proceedings
1493
, edited by
S.
Sivasundaram
(
American Institute of Physics
,
Melville, NY
,
2012
) pp.
350
365
.
15.
C.
Cruz
,
M.I.
Falcão
,
H.R.
Malonek
,
Mathematical Methods in the Applied Sciences
36
(
13
),
1723
1735
(
2013
).
16.
C.
Cruz
,
M.I.
Falcão
,
H.R.
Malonek
, On Numerical Aspects of Pseudo-Complex Powers in
R3. Lecture Notes in Computer Science
,
8579
(
Springer-Verlag Berlin Heidelberg
,
Berlin
,
2014
), pp.
1
16
.
17.
K.
Gürlebeck
,
D.
Legatiuk
,
Complex Variables and Elliptic Equations
62
,
1364
1373
(
2017
).
18.
K.
Gürlebeck
,
K.
Habetha
,
W.
Sprößig
,
Holomorphic functions in the plane and n-dimensional spaces
, (
Birkhäuser
,
2008
).
19.
I.
Caçao
,
K.
Gürlebeck
,
H.
Malonek
,
Advances in Applied Clifford Algebras
11
,
47
60
(
2001
).
20.
I.
Caçao
,
H.
Malonek
, “
On complete sets of hypercomplex Appell polynomials
” in
Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008
,
AIP Conference Proceedings
1048
, edited by
T. E.
Simos
,
G.
Psihoyios
and
Ch.
Tsitouras
(
American Institute of Physics
,
Melville, NY
,
2008
) pp.
647
658
.
21.
K.
Gürlebeck
,
D.
Legatiuk
,
On some properties of pseudo-complex polynomials
,
Modern Trends in Hyper-complex Analysis, Trends in Mathematics
, pp.
217
226
(
2016
).
22.
Yu. M.
Grigor’ev
,
Three-dimensional quaternionic analogue of the Kolosov-Muskhelishvili formulae hyper-complex analysis
,
New perspectives and applications, Trends in Mathematics
, pp.
145
166
(
2014
).
23.
Yu. M.
Grigor’ev
,
Three-dimensional analogue of Kolosov-Muskhelishvili formulae
,
Modern Trends in Hypercomplex Analysis, Trends in Mathematics
, pp.
203
215
(
2016
).
24.
Yu. M.
Grigor’ev
,
Complex Variables and Elliptic Equations
62
,
1343
1363
(
2017
).
25.
S.
Bock
,
Advances in Applied Clifford Algebras
24
,
931
943
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.