The note is concerned with the theory of many players differential games examined within the framework of mean field approach. The results presented in the note are as follows. First, we show that the solution to the deterministic mean field game can be nonunique. Second, we present a property of the multifunction of the mean field game that describes the value multifunction using its value in the intermediate time.
REFERENCES
1.
J.-M.
Lasry
and P.-L.
Lions
, Comptes Rendus Mathématique. Académie des Sciences
343
, 619
–625
(2006
).2.
J.-M.
Lasry
and P.-L.
Lions
, Comptes Rendus Mathématique. Académie des Sciences
343
, 679
–684
(2006
).3.
J.-M.
Lasry
and P.-L.
Lions
, Jpn J Math
2
, 229
–260
(2007
).4.
P.-L.
Lions
, Théorie des jeux à champs moyen et applications. cours au collège de france
, www.college-de-france.fr (2007
–2008).5.
M.
Huang
, R.
Malhamé
, and P.
Caines
, in Analysis, Control and Optimization of Complex Dynamic Systems
, edited by E.
Boukas
and M. R.P.
(Springer
, 2005
), pp. 215
–252
.6.
M.
Huang
, R. P.
Malhamé
, and P. E.
Caines
, Commun Inf Syst
6
, 221
–252
(2006
).7.
M.
Huang
, P. E.
Caines
, and R. P.
Malhamé
, IEEE Trans Automat Contol
52
, 1560
–1571
(2007
).8.
M.
Huang
, P. E.
Caines
, and R. P.
Malhamé
, IEEE Trans Automat Contol
55
, 2799
–2805
(2010
).9.
V.
Kolokoltsov
, J. J.
Li
, and W.
Yang
, Mean field games and nonlinear markov processes
, Preprint at arXiv:1112.3744v2 (2011
).10.
V. N.
Kolokoltsov
, M.
Troeva
, and W.
Yang
, Dyn Games Appl
4
, 208
–230
(2014
).11.
V. N.
Kolokoltsov
and W.
Yang
, Sensitivity analysis for hjb equations with an application to a coupled backward-forward system
, Preprint at arXiv:1303.6234 (2013
).12.
R.
Carmona
and D.
Lacker
, Ann Appl Probab
25
, 1189
–1231
(2015
).13.
D.
Lacker
, Stoch Proc Appl
125
, p. 28562894
(2015
).14.
M.
Bardi
and M.
Fischer
, On non-uniqueness and uniqueness of solutions in finite-horizon mean field games
, Preprint at arXiv:1707.00628 (2017
).15.
A.
Bensoussan
, J.
Frehse
, and P.
Yam
, J Math Pures Appl
103
, 1441
–1474
(2015
).16.
A.
Bensoussan
, J.
Frehse
, and P.
Yam
, The master equation in mean field theory
, Preprint at arXiv:1404.4150 (2014
).17.
V. N.
Kolokoltsov
and M.
Troeva
, On the mean field games with common noise and the mckean-vlasov spdes
, Preprint at arXiv:1506.04594 (2015
).18.
R.
Carmona
and F.
Delarue
(Springer
, 2014
), pp. 77
–128
.19.
A.
Bensoussan
, J.
Frehse
, and P.
Yam
, Mean field games and mean field type control theory
(Springer
, New York
, 2013
).20.
Y. V.
Averboukh
, Sb Math
206
, 893
–920
(2015
).21.
M. G.
Crandall
and P. L.
Lions
, Trans. Amer. Math. Soc.
277
, 1
–42
(1983
).22.
A. I.
Subbotin
, Generalized solutions of first-order PDEs. The dynamical perspective
(Birkhauser
, Boston
, 1995
).
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.