In 1998 I.E.Egorov, using the nonstationary Galerkin method and regularization method, proved the existence and uniqueness of a regular solution to the boundary value problem for a higher order equation with changing time direction. In this paper an error estimate for the approximate solutions of this problem is obtained, and expressed in terms of the regularization parameter and the eigenvalues of the spectral problem for higher order elliptic equation.

1.
I. E.
Egorov
and
V. E.
Fedorov
,
Nonclassical higher order equations in mathematical physics
[in Russian] (
VS SO RAN
,
Novosibirsk
,
1995
).
2.
I. E.
Egorov
,
Mat. Zam. YaGU
5
(
2
),
77
84
(
1998
).
3.
A. V.
Chueshev
,
Solvability of the boundary value problem for the higher-order equations of mixed type
[in Russian] (
NGU
,
Novosibirsk
,
2003
).
4.
V. E.
Fedorov
,
Mat. Zam. YaGU
9
(
2
),
111
116
(
2001
).
5.
A. P.
L‘vov
,
Nonlocal boundary value problems for the nonclassical equations of mathematical physics with varying time direction
[in Russian] (
YaGU
,
Yakutsk
,
2006
).
6.
E. S.
Efimova
,
Mat. Zam. YaGU
19
(
2
),
32
38
(
2012
).
7.
S. A.
Tersenov
,
Parabolic equations with varying time direction
[in Russian] (
Nauka
,
Novosibirsk
,
1985
).
8.
A. I.
Kozhanov
,
Sib. Math. J.
35
(
2
),
324
340
(
1994
).
9.
O. V.
Besov
,
V. P.
Il‘in
, and
S. M.
Nikol‘skiy
,
Integral representations of functions and imbedding theorems
(
V. H. Winston
,
New York
,
1978
).
10.
I. E.
Egorov
,
Uzbekskiy Matematicheskiy Zhurnal.
76
(
3
),
33
40
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.