We consider a Gevrey problem for a third-order equation with multiple characteristics with weighted gluing conditions. In the case of continuous gluing conditions, the solvability of the Gevrey problem is reduced to the theory of integral equations with a kernel that is homogeneous of degree −1, and in the case of weighted gluing conditions the solvability is reduced to the theory of singular integral equations with a singular kernel. The solvability of boundary value problems is established in Hölder spaces. It is shown that the Hölder classes of solutions of the Gevrey problem in the case of weighted gluing functions depend both on the non-integer Hölder exponent and on the weight coefficients of the gluing conditions when necessary and sufficient conditions are satisfied for the input data of the problem.

1.
T. D.
Dzuraev
,
Boundary Value Problems for Mixed and Mixed-Compound Equations
[in Russian] (
FAN
,
Tashkent
,
1985
).
2.
S. A.
Tersenov
,
Parabolic Equations with a Changing Time Direction
[in Russian] (
Nauka
,
Novosibirsk
,
1985
).
3.
S. G.
Pyatkov
, “On the properties of eigenfunctions of a spectral problem and their applications,” in
Correct Boundary Value Problems for Nonclassical Equations of Mathematical Physics
, edited by
V. N.
Vragov
(
SO AN SSSR. Inst. Mat.
,
Novosibirsk
,
1984
), pp.
115
130
.
4.
S. G.
Pyatkov
,
Dokl. Akad. Nauk SSSR
285
:
6
,
1322
1327
(
1985
).
5.
V. I.
Antipin
and
S. V.
Popov
,
Mat. Zametki SVFU
22
:
1
,
3
12
(
2015
).
6.
V. I.
Antipin
,
Sib. Math. J.
54
:
2
,
245
257
(
2013
).
7.
L.
Cattabriga
,
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e serie
13
:
2
,
163
203
(
1959
).
8.
O. A.
Ladyzhenskaya
,
V. A.
Solonnikov
, and
N. N.
Uraltseva
,
Linear and Quasilinear Eequations of Par-abolic Type
[in Russian] (
Nauka
,
Moscow
,
1967
).
9.
L. G.
Mikhailov
,
Integral Equations With Homogeneous Kernel of Degree −1 [in Russian]
(
Donish
,
Dushanbe
,
1966
).
10.
I. C.
Gokhberg
and
I. A.
Feldman
,
Convolution Equations and Projection Methods for Their Solution
[in Russian] (
Nauka
,
Moscow
,
1971
).
11.
I. S.
Gradshtein
and
I. M.
Ryzhik
,
Tables of Integrals, Sums, Series and Products
[in Russian] (
Fizmatlit
,
Moscow
,
1963
).
12.
A. P.
Soldatov
,
Differential Equations
10
:
1
,
143
152
(
1974
).
13.
A. P.
Soldatov
,
Differential Equations
11
:
1
,
137
150
(
1975
).
14.
N. I.
Muskhelishvili
,
Singular Integral Equations [in Rissian]
(
Nauka
,
Moscow
,
1968
).
15.
S. V.
Popov
,
Mat. Zametki SVFU
23
:
2
,
90
107
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.