This study aims to utilize biogas, that produced from organic waste, as fuel for infrared dryers. The digester was dome type, which made from fiberglass, 5.5 m3 capacities, gas container made from soft PVC, 5.6 m3 capacities. The infrared dryer was household scale which have dimension 2000 mm x 2000 mm x 2000 mm, it is consist of 2 racks, which have size 1500 mm x 500 mm x 1400 mm, and consist of 44 baking pans (600 mm X 400 mm x 30 mm), the dryer has 36 kg of capacity. The parameters observed include ambient temperature, temperature inside the digester, pH value, biogas production, drying room temperature, moisture content of sweet potato and biogas consumption for drying. Infrared dryer is used to dry the sweet potato slices thickness of 2 mm with total amount 12 kg, at room temperature dryer ± 60 °C. The results showed that the average biogas production was 1.335 m3 per day, at a temperature of 26 - 35 °C and the neutral pH value was 6.99 - 7.7. 12 kg of sweet potato sliced dried for 4 hours, the initial moisture content of 79.68 % decreased to 8.98 %, the consumption of biogas used 4,952 m3. The final result of drying process of sweet potato slices of 3.5 kg, there was a shrinkage of 70.83 %. Characterization of sweet potato slices is 3 % protein, 0,6 % fat, 94 % carbohydrate and 2 % ash. These sweet potato can be used as flour for cookies and cake raw materials, the use of sweet potato flour can reach 50 – 100 %.

1.
Monnet
,
An Introduction to AnaerobicDigestion of Organic Waste
,
Chemical Engineering Journal
, (
2003
).
2.
A.
Schnurer
and
A.
Jarvis
,
Microbiological Handbook of Biogas Plants Swedish Waste Management, Swedish Gas Centre Report 2007
,
Svenskt Gastensiskt Center AB
(
2009
).
3.
A.H.
Hashimoto
,
Igarashi
and
N.
Shimizu
,
Far Infra Red Irradiation Effect on Pasteurization of Bacteria on or within Wet-solid Medium
,
Journal Chemistry Engineering, Japan
,
25
(
6
) :
666
671
, (
1992
).
4.
G.
Taib
,
G.
Said
,
G.
dan
S.
Wiraatmadja
, Operasi Pengeringan Pada Pengolahan Hasil Pertanian, Mediyatama Sarana Perkasa, Jakarta, (
1988
).
5.
R.
Rachmat
,
Empirical Performance Evaluation of Far Infrared Drying of Blanched Slice Mushroom (Volvariella vaolaceae)
,
International Agricultural Engineering Journal
,
15
(
2–3
) :
123
129
, (
2006
).
6.
I.
Agustinisari
,
Widaningrum
dan Ridwan Rahmat
,
Mutu
Bayam
(
Amaranthus tricolor L
) Hasil Pengeringan Teknologi Far Infra Red (FIR) Selama Penyimpanan, Prosiding Seminan Nasional Teknologi Inovetif Pascapanen untuk Pengembangan Industri Berbasis Pertanian,
2005
.
7.
A.
Hadiand
A.
El-Azeem
,
Effect of Heating, Mixing and Digester Type on Biogas Production from Buffalo Dung
,
Jurnal Agriculture Faculty, Suez-Canal University Mesir
, (
2008
).
8.
T.
Al Seadi
,
D.
Rutz
,
H.
Prassl
,
R.
Kottner
,
T.
Finsterwalder
,
S.
Volk
,
R.
Janssen
,
Biogas Hanbook
,
University of Southern Denmark Esbjerg
,
Denmark
(
2008
).
9.
N.
Afifah
,
A.
Rahayuningtyas
,
A.
Haryanto
,
S.I.
Kuala
,
Pengeringan Lapisan Tipis Irisan singkong Menggunakan Pengering Infrared
,
Potgan Media Komunikasi dan Informasi
, Vol
24
, No.
3
, (
2015
), hal.
167
246
.
11.
B.
Hermawan
,
Q.
Lailatul
,
P.
Candrarini
,
S.P.
,
Evans
, Sampah Organik Sebagai Bahan Baku Biogas, Jurusan Kimia FMIPA UNILA, Lampung, (
2001
).
12.
M.A.
Hessami
,
S.
Christensen
, R. and
Gani
,
Anaerobic digestion of household organic waste to produce biogas
,
Renewable Energy
(
9
) :
1-4
.
954
957
, (
1996
).
13.
E.
Triakuntini
, Pengaruh pengenceran dan pengadukan pada produksi biogas dari limbah rumah makan dengan menggunakan starter ekstrk rumen sapi, Tesis, Fakultas Teknik Universitas Dipenogoro, (
2013
).
14.
M.
Arifin
,
A.
Saepudin
,
A.
Santosa
,
Study of Biogas for Power Generation at Pesantren Saung Balong Al Barokah, Majalengka West Java
,
Journal of Mechatronics, Electric Power and Vehicular Ctechnology
, Vol.
02
, No.
2m
pp.
73
78
, (
2011
).
15.
W.J.
Jewel
, Bioconversion of agricultural waste for pollution control and energy conservation in Livestock waste: A Renewable Resource;
Proceedings of the 4th International Symposium on Livestock wastes
,
Michigan, USA
. (
1976
) :
76
.
16.
ESCAP
, Updated Guidebook on Biogas Development, Energy Resources Development Series No. 27,
Economic and Social Commision for Asia and the Pasific
,
United Nations
,
Bangkok, New York
, (
1984
).
17.
D.
Saseray
S.
Triatmojo
,
A.
Pertiwiningrum
,
Pemanfaatan feses babi (Sus sp) sebagai sumber gasbio dengan penambahan ampas sagu (Metroxylon sp) pada taraf rasio C/N yang berbeda
.
BuletinPeternakan
Vol.
36
(
3
):
66
74
(
2012
).
18.
C.
Zhao
,
Effect of Temperature on Biogas Production in Anaerobic Treatment of Domestic Wastewater UASB System in Hammarby Sjostadverk
, www.sjostadverket.se/download/18.488d9ce137bbdebf48000055137/1350483759340/LWR_EX_135.PDF.
19.
A.K.
Thompson
,
Banana Processing, Bananas and Plantains
,
Chapman and Hall
,
London
, (
1995
).
20.
I.
Doymaz
,
Infrared drying of sweet potato (Ipomoea batatas L.) slices
,
Journal Food Science Technolology
,
2012
December;
49
(
6
):
760
766
.
21.
E.
Silvia
,
dan
Yuwana
, Kinerja Prototipe Pengering Energi Surya Model YSD-UNIB12 Dalam Menegringkan Singkong,
Prosiding Seminar Nasional Fakultas Pertanian
,
Universitas Bengkulu
(
2012
).
22.
P.
Wilaipon
,
Cassava Chip Drying By Using A Small Scale Hot Air Microwave Oven
,
American Journal of Engineering and Applied Sciences
,
6
(
2
) :
211
215
, (
2013
).
23.
A.
Rahayuningtyas
, and
N.
Afifah
,
Design Performance Evaluation and Cost Analysis of Cassava Chips Drying Using Infrared Dryer
,
Jurnal Pangan
Vol
25
No
1
, (April 2016),
33
42
.
24.
Badan Standarisasi Nasional
,
Standar Nasional Indonesia (SNI) 01-2905-1992
,
Jakarta
, (
1992
).
25.
IITA
, Cassava Starch Production, Integrated Cassava Project, Nigeria, (
2005
).
This content is only available via PDF.
You do not currently have access to this content.