The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.

1.
R.
Kolleck
,
R.
Veit
,
M.
Merklein
,
J.
Lechler
,
M.
Geiger
, “
Investigation on induction heating for hot stamping of boron alloyed steels
” in
CIRP Annals – Manufacturing Technology
58
, pp.
275
278
,
2009
.
2.
M.
Heyde
,
K.
Roll
,
R.
Kawalla
,
G.
Bergweiler
,
J.
Kaiser
, “
Lokale Wärmebehandlung von höchstfesten Stahlblechwerkstoffen – Möglichkeit zur Erweiterung des Bauteilspektrums im Karosseriebau
”, in
AutoMetForm / SFU 2010 New Materials for Vehicle Components, Conference Proceeding
, edited by
R.
Kawalla
, et al.
(
Institute of Metal Forming, TU Bergakademie Freiberg
,
Freiberg, Germany
,
2010
), pp.
241
253
.
3.
A.
Kunke
,
A.
Guk
,
V.
Kräusel
, “
Microstructure Evolution during roll forming with integrated heat treatment
”, in
AutoMetForm / SFU 2014 New Materials for Vehicle Components, Conference Proceeding
, edited by
R.
Kawalla
, et al.
(
Institute of Metal Forming, TU Bergakademie Freiberg
,
Freiberg, Germany
,
2014
), pp.
155
164
.
4.
K.
Richter
,
R.
Müller
,
A.
Kunke
,
V.
Kräusel
,
D.
Landgrebe
, “
Manufacturing of Long Products Made of Innovative Lightweight Materials
”,
Acta Metall. Sin. (Engl. Lett.)
28
(
2
), S.
1496
1502
,
2015
.
5.
Th.
Tröster
,
J.
Niewel
, “
Inductive heating of sheet metal blanks and determination on corresponding process window for press hardening
”, Report for project P 805 / IGF-Nr. 16319 N, March
2014
.
6.
G.
Korpala
,
R.
Kawalla
, “
Identifikation erwärmungsabhängiger Einflüsse auf die Fließeigenschaften von Stahl und Aluminium
”,
Schmiede Journal
, September
2013
, S.
36
38
.
7.
J.
Orlich
, “
Beschreibung der Austenitisierungsvorgänge unlegierter und legierter Stähle bei induktiver Erwärmung
”, Ph.D. thesis,
TU Berlin
,
1971
.
This content is only available via PDF.
You do not currently have access to this content.