The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.

1.
J.
Rausch
and
D.
Kugele
,
Temperature Monitoring of Thermoplastic Laminates in an Automated Process Chain - Potential for Enhanced Mechanical Properties and Effective Processing
:
SAMPE Europe
,
2016
.
2.
E.
Guzman-Maldonado
,
N.
Hamila
,
N.
Naouar
,
G.
Moulin
, and
P.
Boisse
,
Materials & Design
93
,
431
442
(
2016
).
3.
H.
Lessard
,
G.
Lebrun
,
A.
Benkaddour
, and
X.
Pham
,
Composites Part A: Applied Science and Manufacturing
70
,
59
68
(
2015
).
4.
Christian
Brauner
,
Christian
Peters
,
Franziska
Brandwein
,
Axel
Herrmann
,
Journal of Composite Materials
(
2013
).
5.
Perkin
Elmer
,
Technical Specifications for the DSC 8000/8500 Differential Scanning Calorimeter
.
6.
C.
Schick
,
Analytical and bioanalytical chemistry
395
,
1589
1611
(
2009
).
7.
E.
Zhuravlev
and
C.
Schick
,
Thermochimica Acta
1
13
(
2010
).
8.
M. Y.
Efremov
,
E. A.
Olson
,
M.
Zhang
,
F.
Schiettekatte
,
Z.
Zhang
, and
L. H.
Allen
,
Review of Scientific Instruments
75
, p.
179
(
2004
).
9.
V.
Mathot
,
M.
Pyda
,
T.
Pijpers
,
G. Vanden
Poel
,
E.
van de Kerkhof
,
S.
van Herwaarden
,
F.
van Herwaarden
, and
A.
Leenaers
,
Thermochimica Acta
522
,
36
45
(
2011
).
10.
M. L.
Di Lorenzo
and
C.
Silvestre
,
Progress in Polymer Science
24
,
917
950
(
1999
).
11.
L.
Mandelkern
,
Crystallization of Polymers: Kinetics and mechanisms, Second Edition
(
Cambridge University Press
,
Cambridge
,
2004
).
12.
Long
, (
1995
).
13.
Z.
Ding
and
J. E.
Spruiell
,
Journal of Polymer Science Part B: Polymer Physics
35
,
1077
1093
(
1997
).
14.
M.
Avrami
,
The Journal of Chemical Physics
7
, p.
1103
(
1939
).
15.
T.
Ozawa
,
Polymer
150
158
(
1970
).
16.
R. M.
Patel
and
J. E.
Spruiell
,
Polymer Engineering & Science
730
738
(
1991
).
17.
Nakamura
,
Journal of Applied Polymer Science
1077
1091
(
1972
).
18.
Nakamura
, (
1973
).
19.
Nakamura
, (
1974
).
20.
X.
Guo
,
A. I.
Isayev
, and
L.
Guo
,
Polymer Engineering & Science
1999
, p.
2096
(
1999
).
21.
J. D.
Hoffman
,
G. T.
Davis
, and
J. I.
Lauritzen
,
Treatise on Solid State Chemistry
497
614
(
1976
).
22.
S.
Hoffmann
, (
2003
).
23.
A.
Ziabicki
,
Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing
(
John Wiley & Sons Ltd
(1. Januar 1976),
1976
).
24.
A.
Ziabicki
,
Colloid & Polymer Science
274
,
209
217
(
1996
).
25.
J. D.
Sierra
,
M. d. P.
Noriega
, and
J. F.
Gomez
,
Zeitschrift Kunststofftechnik
2006
(
2006
).
26.
D.
Kugele
,
J.
Rausch
,
J.
Kriegseis
,
K.
Gündisch
,
L.
Kärger
, and
F.
Henning
,
On the Thermal Behavior of Thermoplastic Laminates During Transfer-A Novel Wind-Tunnel Approach: 17th European Conference on Composite Materials
,
2016
.
27.
D.
Kugele
,
J.
Rausch
,
P.
Müller
,
L.
Kärger
, and
F.
Henning
,
Temperature Distribution in Thickness Direction of Thermoplastic Laminates During Thermoforming: International Conference on Automotive Composites
,
2016
.
This content is only available via PDF.
You do not currently have access to this content.