We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.
REFERENCES
1.
C.
Sulem
and P. L.
Sulem
, The Nonlinear Schrödinger Equation
(Springer-Verlag
, New York
, 1999
).2.
R. K.
Dodd
, J. C.
Eilbeck
, J. D.
Gibbon
, and H. C.
Morris
, Solitons and Nonlinear Wave Equations
(Academic
, New York
, 1983
).3.
M. J.
Ablowitz
, B.
Prinari
, and A. D.
Trubatch
, Discrete and Continuous Nonlinear Schrödinger Systems
(Cambridge University Press
, Cambridge
, 2004
).4.
J.
Bourgain
, Global Solutions of Nonlinear Schrödinger Equations
(American Mathematical Society
, Providence
, 1999
).5.
M. J.
Ablowitz
, Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons
(Cambridge University Press
, 2011
).6.
A.
Hasegawa
, Optical Solitons in Fibers
(Springer-Verlag
, Heidelberg
, 1990
).7.
F. Kh.
Abdullaev
, S. A.
Darmanyan
, and P. K.
Khabibullaev
, Optical Solitons
(Springer-Verlag
, Heidelberg
, 1993
).8.
A.
Hasegawa
and Y.
Kodama
, Solitons in Optical Communications
(Clarendon Press
, Oxford
, 1995
).9.
Yu. S.
Kivshar
and G. P.
Agrawal
, Optical Solitons: From Fibers to Photonic Crystals
(Academic Press
, 2003
).10.
C. J.
Pethick
and H.
Smith
, Bose-Einstein Condensation in Dilute Gases
(Cambridge University Press
, Cambridge
, 2002
).11.
L. P.
Pitaevskii
and S.
Stringari
, Bose-Einstein Condensation
, (Oxford University Press
, Oxford
, 2003
).12.
P. G.
Kevrekidis
,D. J.
Frantzeskakis
, andR.
Carretero-González
(Eds.), Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Theory and Experiment
(Springer-Verlag
, Berlin
, 2008
);R.
Carretero-González
, D. J.
Frantzeskakis
, and P. G.
Kevrekidis
(2008
) Nonlinearity
21
, R139
.13.
P. G.
Kevrekidis
, D. J.
Frantzeskakis
and R.
Carretero-González
, The Defocusing Nonlinear Schrödinger Equation
, (SIAM
, Philadelphia
, 2015
).14.
E.
Infeld
and G.
Rowlands
, Nonlinear Waves, Solitons and Chaos
(Cambridge University Press
, Cambridge
, 1990
).15.
W.
van Saarloos
and P. C.
Hohenberg
(1992
) Physica D
56
, 303
.16.
I. S.
Aranson
and L.
Kramer
(2002
) Rev. Mod. Phys.
74
, 99
.17.
M. C.
Cross
and P. C.
Hohenberg
(1993
) Rev. Mod. Phys.
65
, 851
.18.
A.
Scott
, Nonlinear Science. Emergence and Dynamics of Coherent Structures
, 2nd edn (Oxford University Press
, Oxford
, 2003
).19.
M. J.
Ablowitz
and H.
Segur
, Solitons and the Inverse Scattering Transform
(SIAM
, Philadelphia
, 1981
).20.
V. E.
Zakharov
, S. V.
Manakov
, S. P.
Nonikov
, and L. P.
Pitaevskii
, Theory of Solitons
(Consultants Bureau
, NY
, 1984
).21.
A. C.
Newell
, Solitons in Mathematics and Physics
(SIAM
, Philadelphia
, 1985
).22.
V. S.
Gerdjikov
, “Basic aspects of soliton theory,” in Geometry, Integrability and Quantization
, I. M.
Mladenov
, A. C.
Hirshfeld
(Eds.), (Softex, Sofia
, 2005
), pp. 78
–125
, nlin.SI/0604004.23.
V. I.
Karpman
and V. V.
Solov’ev
(1981
) Physica D
3D
, 487
;V. I.
Karpman
(1979
) Physica Scripta
20
, 462
–478
.24.
V. S.
Gerdjikov
, D. J.
Kaup
, I. M.
Uzunov
, and E. G.
Evstatiev
(1996
) Phys. Rev. Lett.
77
, 3943
–3946
.25.
V. S.
Gerdjikov
, I. M.
Uzunov
, E. G.
Evstatiev
, and G. L.
Diankov
(1997
) Phys. Rev. E
55
, 6039
–6060
.26.
V. S.
Gerdjikov
, E. G.
Evstatiev
, D. J.
Kaup
, G. L.
Diankov
, and I. M.
Uzunov
(1998
) Phys. Lett. A
241
, 323
–328
.27.
V. S.
Gerdjikov
, “N-soliton interactions, the Complex Toda Chain and stability of NLS soliton trains,” in Proceedings of the International Symposium on Electromagnetic Theory
, Vol. 1
, E.
Kriezis
(Ed.), (Aristotle University of Thessaloniki
, Greece
, 1998
), pp. 307
–309
;V. S.
Gerdjikov
, “Complex Toda Chain – an integrable universal model for adiabatic N-soliton interactions,” in Nonlinear Physics: Theory and Experiment. II
, M.
Ablowitz
, M.
Boiti
, F.
Pempinelli
, B.
Prinari
(Eds.), (World Scientific
, 2003
), pp. 64
–70
.28.
V. S.
Gerdjikov
, E. V.
Doktorov
, and N. P.
Matsuka
(2007
) Theor. Math. Phys.
151
, 762
–773
.29.
V. S.
Gerdjikov
, N. A.
Kostov
, E. V.
Doktorov
, and N. P.
Matsuka
(2009
) Math. Comput. Simulat.
80
, 112
–119
.30.
V. S.
Gerdjikov
and M. D.
Todorov
, “N-soliton interactions for the Manakov system: Effects of external potentials,” Chapter in Localized Excitations in Nonlinear Complex Systems, Nonlinear Systems and Complexity
7
, P.
Kevrekidis
, et al (Eds.), (Springer International Publishing
, Switzerland
, 2014
), pp. 147
–169
.31.
V. S.
Gerdjikov
, M. D.
Todorov
, and A. V.
Kyuldjiev
, “Polarization effects in modeling soliton interactions of the Manakov model
,” in AMiTaNS’15
, AIP Conference Proceedings
1684
, edited by M. D.
Todorov
, (American Institute of Physics
, Melville, NY
, 2015
), paper 080006, 12
p.32.
V. S.
Gerdjikov
, M. D.
Todorov
, and A. V.
Kyuldjiev
(2017
) Wave Motion
71
, 71
–81
, Special Issue “Mathe-matical modeling and physical dynamics of solitary waves: From continuum mechanics to field theory,” I. C. Christov, M. D. Todorov, and S. Yoshida (Guest Eds.).33.
R. M.
Caplan
and R.
Carretero-González
(2013
) Appl. Num. Math.
71
, 24
–40
.34.
C. T.
Kelley
, Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms
(SIAM
, 2003
).35.
V. V.
Afanasjev
(1995
) Optics Letters
20
, 704
–706
.36.
J.
Rossi
, R.
Carretero-González
, and P. G.
Kevrekidis
. Non-conservative variational approximation for non-linear Schrödinger equations
, in preparation.37.
J.
Rossi
, R.
Carretero-González
, P. G.
Kevrekidis
, and M.
Haragus
(2016
) J. Phys. A
49
, 455201
.38.
V. S.
Gerdjikov
, M. D.
Todorov
, and A. V.
Kyuldjiev
(2016
) Math. Comput. Simulat.
121
, 166
–178
.
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.