Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

1.
A. D.
Şahin
,
I.
Dincer
, and
M. A.
Rosen
,
International Journal of Energy Research
, vol.
30
, pp.
553
566
, (
2006
)
2.
S. S.
Mao
and
X.
Chen
,
International Journal of Energy Research
, vol.
31
, pp.
619
636
(
2007
)
3.
H.
Okamoto
,
T.
Suzuki
,
K.
Mori
,
Z.
Cao
,
T.
Onuki
, and
H.
Kuwano
,
International Journal of Energy Research
, vol.
33
, pp.
1180
1190
(
2009
)
4.
M.
Freunek
,
M.
Müller
,
T.
Ungan
,
W.
Walker
, and
L. M.
Reindl
,
Journal of Electronic Materials
, vol.
38
, pp.
1214
1220
,
2009
.
5.
M.
Faizal
and
M. Rafiuddin
Ahmed
,
International Journal of Energy Research
, vol.
35
, pp.
1119
1144
(
2011
)
6.
M.
Lubieniecki
and
T.
Uhl
,
Journal of Electronic Materials
, vol.
44
, p.
341
(
2015
)
7.
M.
Soda
and
A.
Beyene
,
International Journal of Energy Research
, vol.
40
, pp.
51
60
(
2016
)
8.
S.
Roundy
and
P. K.
Wright
,
Smart Materials and structures
, vol.
13
, p.
1131
(
2004
)
9.
R.
Guigon
,
J.-J.
Chaillout
,
T.
Jager
, and
G.
Despesse
,
Smart Materials and Structures
, vol.
17
, p.
015038
(
2008
)
10.
G.
Romain
,
C.
Jean-Jacques
,
J.
Thomas
, and
D.
Ghislain
,
Smart Materials and Structures
, vol.
17
, p.
015039
(
2008
)
11.
C.-H.
Wong
,
Z.
Dahari
,
A. A.
Manaf
, and
M. A.
Miskam
,
Journal of Electronic Materials
, vol.
44
, pp.
13
21
(
2015
)
12.
D.
Vatansever
,
R.
Hadimani
,
T.
Shah
, and
E.
Siores
,
Smart Materials and Structures
, vol.
20
, p.
055019
(
2011
)
13.
E.
Morrison
and
A.
Decker
, “
Comparing the Voltage Output of Water in Drop and Flow Form Using a Piezoelectric Sensor and Hydroelectric Turbine
,”
2015
.
14.
A. S.
Grinspan
and
R.
Gnanamoorthy
,
Colloids and Surfaces A: Physicochemical and Engineering Aspects
, vol.
356
, pp.
162
168
(
2010
)
15.
M.
Al Ahmad
and
G. E.
Jabbour
,
Electronics letters
, vol.
48
, pp.
647
649
(
2012
)
16.
T.
Alkhaddeim
,
B.
AlShujaa
,
W.
AlBeiey
,
F.
AlNeyadi
, and
M.
Al Ahmad
, “
Piezoelectric energy droplet harvesting and modeling
,” in (
Sensors, 2012 IEEE
,
2012
) pp.
1
4
.
17.
M.
Al Ahmad
,
Journal of Electronic Materials
, vol.
43
, p.
452
(
2014
)
18.
Z.-Z.
Ong
,
V.-K.
Wong
, and
J.-H.
Ho
,
Sensors and Actuators A: Physical
, vol.
252
, pp.
154
164
(
2016
)
19.
C. H.
Wong
and
Z.
Dahari
,
Journal of Electronic Materials
, pp.
1
14
(
2017
)
20.
K.
Uchino
, “
Introduction to piezoelectric actuators and transducers
,” (DTIC Document2003)
21.
M. A.
Ilyas
and
J.
Swingler
,
Energy
, vol.
90
, pp.
796
806
(
2015
)
This content is only available via PDF.
You do not currently have access to this content.