Our study aims to introduce a new quantitative workflow that integrates neural networks (NNs) and multi criteria decision analysis (MCDA). Existing MCDA workflows reveal a number of drawbacks, because of the reliance on human knowledge in the weighting stage. Thus, new workflow presented to form suitability maps at the regional scale for solid waste planning based on NNs. A feed-forward neural network employed in the workflow. A total of 34 criteria were pre-processed to establish the input dataset for NN modelling. The final learned network used to acquire the weights of the criteria. Accuracies of 95.2% and 93.2% achieved for the training dataset and testing dataset, respectively. The workflow was found to be capable of reducing human interference to generate highly reliable maps. The proposed workflow reveals the applicability of NN in generating landfill suitability maps and the feasibility of integrating them with existing MCDA workflows.

1.
Ministry of Housing and Local Government M. Criteria for Siting Sanitary Landfills: National Strategic Plan for Solid Waste Management. Kuala Lumpur, Malaysia
:
Ministry of Housing and Local Government
,
Malaysia
;
2005
.
2.
Ahmad
SZ.
,
Sanusi
M.
,
Yusoff
MS
.
Spatial effect of new municipal solid waste landfill siting using different guidelines
.
Waste Management & Research
.
2013
;
32
(
1
):
24
33
.
3.
Ghobadi
MH.
,
Babazadeh
R.
,
Bagheri
V.
Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran
.
Environmental Earth Sciences
. Springer Berlin Heidelberg;
2013
;
70
(
4
):
1823
1840
. Available at: DOI:
4.
Uyan
M.
MSW landfill site selection by combining AHP with GIS for Konya, Turkey
.
Environmental Earth Sciences
. Springer Berlin Heidelberg;
2014
;
71
(
4
):
1629
1639
. Available at: DOI:
5.
Javaheri
H.
,
Nasrabadi
T.
,
Jafarian
MH.
,
Rowshan
GR.
,
Khoshnam
H.
Site selection of municipal solid waste landfills using analytical hierarchy process method in a geographical information technology environment in giroft
.
2006
. pp.
177
184
.
6.
Moradi
M.
,
Delavar
MR.
,
Moshiri
B.
A GIS-based multi-criteria decision-making approach for seismic vulnerability assessment using quantifier-guided OWA operator: a case study of Tehran, Iran
.
Annals of GIS
. Taylor & Francis; 21 October
2014
; :
1
14
. Available at: DOI:
7.
Alanbari
MA.
,
Al-Ansari
N.
,
Jasim
HK
. GIS and multicriteria decision analysis for landfill site selection in Al-Hashimyah Qadaa.
Natural Science
.
Scientific Research Publishing
;
2014
;
2014
.
8.
Sumathi
VR
.
GIS-based approach for optimized siting of municipal solid waste landfill
.
2008
;
28
:
2146
2160
. Available at: DOI:
9.
Shahabi
H.
,
Keihanfard
S.
,
Ahmad
B Bin.
,
Amiri
MJT
.
Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images
.
Environmental Earth Sciences
.
2014
;
71
(
9
):
4221
4233
.
10.
Khan
S.
,
Faisal
MN
.
An analytic network process model for municipal solid waste disposal options
.
Waste management
(
New York, N.Y
.). January
2008
;
28
(
9
):
1500
1508
. Available at: DOI: (Accessed: 3 December 2015)
11.
Yal
G.
,
Akgün
H.
Landfill site selection utilizing TOPSIS methodology and clay liner geotechnical characterization: a case study for Ankara, Turkey
.
Bulletin of Engineering Geology and the Environment
. Springer Berlin Heidelberg;
2014
;
73
(
2
):
369
388
. Available at: DOI:
12.
Malczewski
J.
GIS-based multicriteria decision analysis: a survey of the literature
.
International Journal of Geographical Information Science
.
2006
;
20
(
7
):
703
726
.
13.
Isalou
AA.
,
Zamani
V.
,
Shahmoradi
B.
,
Alizadeh
H.
Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP
).
Environmental Earth Sciences
. Springer-Verlag;
2013
;
68
(
6
):
1745
1755
. Available at: DOI:
14.
Al-Jarrah
O.
,
Abu-Qdais
H.
Municipal solid waste landfill siting using intelligent system
.
Waste Management
.
2006
;
26
(
3
):
299
306
. Available at: DOI:
15.
Romali
NS.
,
Ishak
WFW.
,
Mokhtar
NB.
,
Samah
MAA
.
Solid Waste Management Development Of AHP Model for Application of Landfill Sites Selection in Kuantan Pahang, Malaysia
.
International Symposium on the Analytical Hierarchy Process (ISAHP 2013). Malaysia
,;
2013
.
16.
Quan
H-C.
,
Lee
B-G.
GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea). KSCE Journal of Civil Engineering
.
Korean Society of Civil Engineers
;
2012
;
16
(
7
):
1258
1266
. Available at: DOI:
17.
Paraskevas
T.
,
Dimitrios
R.
,
Andreas
B.
Use of artificial neural network for spatial rainfall analysis
.
Journal of Earth System Science
. Springer India;
2014
;
123
(
3
):
457
465
. Available at: DOI:
18.
Jalalkamali
A.
,
Sedghi
H.
,
Manshouri
M.
Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran
.
Journal of Hydroinformatics
.
2011
;
13
(
4
):
867
876
.
19.
Nourani
V.
,
Pradhan
B.
,
Ghaffari
H.
,
Sharifi
S.
Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models
.
Natural Hazards
. Springer Netherlands;
2014
;
71
(
1
):
523
547
. Available at: DOI:
20.
Li
Y.
,
Chen
G.
,
Tang
C.
,
Zhou
G.
,
Zheng
L.
Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network
.
Natural Hazards and Earth System Science
.
2012
;
12
(
8
):
2719
2729
. Available at: DOI:
21.
Wu
Q.
,
Xu
H.
,
Pang
W.
GIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of north China
.
Environmental Geology
. Springer-Verlag;
2008
;
54
(
5
):
937
943
. Available at: DOI:
22.
Yal
G.
,
Akgün
H.
Landfill site selection and landfill liner design for Ankara, Turkey
.
Environmental Earth Sciences
. Springer Berlin Heidelberg;
2013
;
70
(
6
):
2729
2752
. Available at: DOI:
23.
Nizamani
S.
,
Memon
N.
,
Wiil
UK.
,
Karampelas
P.
Modeling suspicious email detection using enhanced feature selection
. arXiv preprint arXiv:1312.1971.
2013
;
24.
Zhuo
L.
,
Cheng
B.
,
Zhang
J.
A comparative study of dimensionality reduction methods for large-scale image retrieval
.
Neurocomputing
. 2 October
2014
;
141
:
202
210
. Available at: DOI:
25.
Liu
H.
,
Setiono
R.
A probabilistic approach to feature selection-a filter solution
.
ICML. Citeseer
;
1996
. pp.
319
327
.
26.
Abdullah
L.
,
Naim
N.
,
Wahab
AF
.
Determination of weight for landfill-siting criteria under conflicting bifuzzy preference relation
.
J Sustain Sci Manag
.
2011
;
6
:
139
147
.
27.
Felicísimo
Á.
,
Cuartero
A.
,
Remondo
J.
,
Quirós
E.
Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study
.
Landslides
. Springer-Verlag;
2013
;
10
(
2
):
175
189
. Available at: DOI:
28.
Bowden
GJ.
,
Maier
HR.
,
Dandy
GC
.
Optimal division of data for neural network models in water resources applications
.
Water Resources Research
. 13 February
2002
;
38
(
2
):
2
1
-2–11. Available at: DOI: (Accessed: 19 November 2015)
29.
Pradhan
B.
,
Lee
S.
Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling
.
Environmental Modelling & Software
. June
2010
;
25
(
6
):
747
759
. Available at: DOI:
30.
Garcia-Breijo
E.
,
Atkinson
J.
,
Gil-Sanchez
L.
,
Masot
R.
,
Ibañez
J.
,
Garrigues
J.
, et al. 
A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters
.
Sensors and Actuators A: Physical
. December
2011
;
172
(
2
):
570
582
. Available at: DOI:
This content is only available via PDF.
You do not currently have access to this content.