The utilization of some type of cheap filler as partial cement replacement is an effective way of improving concrete sustainability. With the recent trends to reduce water to cement ratio and improve compaction, there is no enough space or water for complete hydration of cement. This means that actually, a portion of mixed cement acts as expensive filler. Replacing this portion with cheaper filler that requires less energy to produce is, therefore, beneficial. Crushed limestone is the most promising filler. This work is to investigate the effect of the amount of limestone fillers on the sustainability and the fresh and mechanical properties of the resulting concrete. A rich mix is designed with a low water/cement ratio of 0.4. Lime is introduced as a replacement percentage of cement. Ratios of 0, 10, 20 and 30% were used. Slump, compressive strength, specific gravity and water absorption are evaluated for every mix. In addition, the effect of the amount of lime on the residual strength of concrete subjected to elevated temperatures is also investigated. Samples are subjected to six different temperature stations of 20, 100, 200, 300, 500 and 700°C for six hours before being cooled and subsequently tested for compressive strength and specific gravity. Sustainability of the tested mixes is evaluated through reductions in the emitted carbon dioxide, energy and reduction in cost. Based on the annual use of concrete in Kuwait, the sustainability benefits resulting from the use of limestone filler in Kuwait are evaluated and assessed.
The paper is concluded with the recommendation of the use of 15% limestone filler as partial cement replacement where the properties and the behavior under high temperature of the resulting concrete are almost the same as those of conventional concrete with considerable cost and sustainability benefits.