A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts’ physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

1.
P. H.
Phuong
,
L. C.
Loc
,
N.
Tri
,
N. T.
Tien
,
N. H. P.
Thao
,
N. Q.
Tuan
,
N. T. T.
Van
,
H. T.
Cuong
,
H. C.
Anh
, “
Effect of NiO/MgO ratio on performance of Ni-based catalyst supported on α-Al2O3 in dry reforming of methane
”,
Journal of Catalysis and adsorption
(in press, Vietnamese).
2.
L.
Guczi
,
G.
Stefler
,
O.
Geszti
,
I.
Sajó
,
Z.
Pászti
,
A.
Tompos
,
Z.
Schay
,
Applied Catalysis A: General
375
,
236
246
(
2010
).
3.
C. E.
Daza
,
J.
Gallego
,
J. A.
Moreno
,
F.
Mondragón
,
S.
Moreno
,
R.
Molina
,
Catalysis Today
133–135
,
357
366
(
2008
).
4.
Guo
J.
,
Lou
H.
,
Zhao
Ho.
,
Chai
D.
,
Zheng
X.
,
Applied Catalysis A: General
273
,
75
82
(
2004
).
5.
K. Y.
Koo
,
H. S.
Roh
,
Y. T.
Seo
,
D. J.
Seo
,
W. L.
Yoon
,
S. B.
Park
,
Applied Catalysis A: General
340
,
183
190
(
2008
).
6.
L. C.
Loc
,
P. H.
Phuong
,
N. H. P.
Thao
,
N.
Tri
,
N. T. T.
Van
,
H. T.
Cuong
,
H. C.
Anh
,
Vietnam Journal of Chemistry
55
,
1
7
(
2017
).
7.
S. N. Aleksandar
Golubovic’
,
Stevan
Djuric’
,
Andreja
Valc’ic’
,
J. Sehem. Soc.
6
,
411
418
(
2001
).
8.
F. M. Jaime Gallego Carlos Enrique
Daza
,
Sonia
Moreno
,
Rafael
Molina
,
Fuel
,
592
603
(
2010
).
9.
A. K. Carlos Enrique
Daza
,
Sonia
Moreno
,
Rafael
Molina
,
Applied Catalysis A: General
364
,
65
74
(
2009
).
10.
R. S. R. Juan Manuel
Hernández-Enríquez
,
Ricardo
García-Alamilla
,
Luz Arcelia
García-Serrano
,
Brent Edward
Handy
,
Guadalupe
Cárdenas-Galindo
,
Arturo
Cueto-Hernández
,
J. Mex. Chem. Soc.
56
,
115
120
(
2012
).
11.
Phuong
P. H.
,
Loc
L. C.
,
Sang
P. T.
,
Tri
N.
,
Journal of Science and Technology
55
,
49
56
(
2017
).
12.
Luu Cam
Loc
,
Hoang Tien
Cuong
,
Nguyen
Tri
,
Vietnam Journal of Chemistry, Special Issue for the 45th anniversary
.
25
31
(
2007
) (Vietnamese).
13.
Kee Young
Koo
,
Hyun-Seog Roh. Un Ho
Jung
,
Wang Lai
Yoon
,
Catalysis Today
185
,
126
130
(
2012
).
14.
J. V. N. Steven
Corthals
,
Hendrik
De Winne
,
Jan
Geboers
,
Pierre
Jacobs
,
Bert
Sels
,
Applied Catalysis B: Environmental
105
,
263
275
(
2011
).
15.
K. K. P.
Nandini
A.
Pechimuthu
,
Subhash C.
Dhingra
,
Ind. Eng. Chem. Res
46
,
1731
1736
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.