Metal-dielectric nanocavitiy is an effective tool for light manipulation and strong localization of the electric field at nanoscale. This system provides the ability to control both: field enhancement factor and temperature and can be utilized in biological applications for SERS and harmonic generation. In turn, some applications require high field intensities, but overheating may either affect on the resulting properties or damage biological sample. Here, we numerically investigate metal dielectric nanocavity based composed on gold thin film and silicon nanoparticle. We study the relation between the distance between silicon nanosphere and metal layer and heating/enhancement factor. This work paves the way for the creation of perspective sensing systems based on the metal-dielectric nanocavity for biological and sensing applications.

1.
D.
Fu
,
J.
Zhou
,
W. S.
Zhu
,
P. W.
Manley
,
Y. K.
Wang
,
T.
Hood
, and
A. W. X. S.
Xie
,
Nature Chemistry
6
,
614
622
(
2014
).
2.
M. R.
Eftink
,
Methods in Enzymology
259
,
487
512
(
1995
).
3.
N.
Greenfield
,
Nature Protocols
1
,
2527
2535
(
2007
).
4.
H.
Huang
,
S.
Delikanli
,
H.
Zeng
,
D.
Ferkey
, and
A.
Pralle
,
Nature Nanotechnology
5
,
602
606
(
2010
).
5.
D.
Gareau
,
A.
Laurent
,
T.
Desrosiers
, and
A.
Vallee-Belisle
,
Nano Letters
DOI: (
2016
).
6.
K.
Okabe
,
N.
Inada
,
C.
Gota
,
Y.
Harada
,
T.
Funatsu
, and
S.
Uchiyama
,
Nature Communications
3
, p.
705
(
2012
).
7.
G.
Kucsko
,
P. C.
Maurer
,
N. Y.
Yao
,
M.
Kubo
,
H. J.
Noh
,
P. K.
Lo
,
H.
Park
, and
M. D.
Lukin
,
Nature
500
,
54
58
(
2013
).
8.
H.
Liu
,
Y.
Fan
,
J.
Wang
,
A.
Song
,
H.
Shi
,
R.
Han
,
Y.
Sha
, and
Y.
Jiang
,
Scientific Reports
5
, p.
14879
(
2015
).
9.
A.
Riedinger
,
P.
Guardia
,
A.
Curcio
,
M.
Garcia
,
R.
Cingolani
,
L.
Manna
, and
T.
Pellegrino
,
Nano Letters
13
,
2399
2406
(
2013
).
10.
M.
Iwaki
,
A.
Iwane
,
K.
Ikezaki
, and
T.
Yanagida
,
Nano Letters
15
,
2456
2461
(
2015
).
11.
H.
Zhou
,
M.
Sharma
,
O.
Berezin
,
D.
Zuckerman
, and
M.
Berezin
,
Chem Phys Chem
17
,
27
36
(
2016
).
12.
C.
Brites
,
P.
Lima
,
N.
Silva
,
A.
Millan
,
V.
Amaral
,
F.
Palacio
, and
L.
Carlos
,
Nanoscale
4
,
4799
4829
(
2012
).
13.
D.
Jaque
and
F.
Vetrone
,
Nanoscale
4
,
4301
4326
(
2012
).
14.
Y.-K.
Tzeng
,
P.-C.
Tsai
,
H.-Y.
Liu
,
O.
Chen
,
H.
Hsu
,
F.-G.
Yee
,
M.-S.
Chang
, and
H.-C.
Chang
,
Nano Letters
15
,
3945
3952
(
2015
).
15.
J.-P.
Tetienne
,
A.
Lombard
,
D.
Simpson
,
C.
Ritchie
,
J.
Lu
,
P.
Mulvaney
, and
L.
Hollenberg
,
Nano Letters
16
,
326
333
(
2015
).
16.
D.
Aspnes
and
A.
Studna
,
Physical review B
27
, p.
985
(
1983
).
17.
P. B.
Johnson
and
R.-W.
Christy
,
Physical review B
6
, p.
4370
(
1972
).
18.
J. G.
Speight
,
Lange’s handbook of chemistry
, Vol.
1
(
McGraw-Hill
New York
,
2005
).
19.
G. P.
Zograf
,
M. I.
Petrov
,
D. A.
Zuev
,
P. A.
Dmitriev
,
V. A.
Milichko
,
S. V.
Makarov
, and
P. A.
Belov
,
Nano Letters
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.